embedding_grad_kernel.cc 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/embedding_grad_kernel.h"

17
#include "paddle/fluid/memory/memcpy.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void EmbeddingGradKernel(const Context& ctx,
                         const DenseTensor& input,
                         const DenseTensor& weight,
                         const DenseTensor& out_grad,
                         int64_t padding_idx,
                         DenseTensor* weight_grad) {
  DDim table_dim;
  table_dim = weight.dims();

  auto ids_t = &input;
  auto d_output_t = &out_grad;
  auto d_table_t = weight_grad;

  int64_t ids_numel = ids_t->numel();
  PADDLE_ENFORCE_EQ(
      ids_numel <= std::numeric_limits<int32_t>::max(),
      true,
      phi::errors::OutOfRange(
          "Number of ids greater than int32_t::max , please check "
          "number of ids in LookupTableV2GradXPUKernel."));

  auto& dev_ctx = ctx;
  const int64_t* ids_data = ids_t->data<int64_t>();
  const T* d_output_data = d_output_t->data<T>();
  T* d_table_data = dev_ctx.template Alloc<T>(d_table_t);
  int xm = d_table_t->dims()[0];
  int ym = static_cast<int>(ids_numel);
  int n = d_table_t->dims()[1];

  int r = xpu::embedding_grad<T, int64_t>(dev_ctx.x_context(),
                                          d_output_data,
                                          ids_data,
                                          d_table_data,
                                          xm,
                                          n,
                                          ym,
                                          padding_idx);
  PADDLE_ENFORCE_XDNN_SUCCESS(r, "embedding_grad");
}

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
template <typename T, typename Context>
void EmbeddingSparseGradKernel(const Context& ctx,
                               const DenseTensor& input,
                               const DenseTensor& weight,
                               const DenseTensor& out_grad,
                               int64_t padding_idx,
                               SelectedRows* weight_grad) {
  DDim table_dim = weight.dims();

  xpu::ctx_guard RAII_GUARD(ctx.x_context());
  std::vector<int64_t> ids(input.numel());
  if (input.dtype() == phi::DataType::INT64) {
    paddle::memory::Copy(CPUPlace(),
                         ids.data(),
                         input.place(),
                         input.data<int64_t>(),
                         sizeof(int64_t) * input.numel());

  } else if (input.dtype() == phi::DataType::INT32) {
    int64_t* id_t = RAII_GUARD.alloc_l3_or_gm<int64_t>(input.numel());
    int r = xpu::cast<int32_t, int64_t>(
        ctx.x_context(), input.data<int>(), id_t, input.numel());
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "cast");
    paddle::memory::Copy(CPUPlace(),
                         ids.data(),
                         input.place(),
                         id_t,
                         sizeof(int64_t) * input.numel());
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
        "emebdding input only support int32 and int64"));
  }

  auto ids_num = static_cast<int64_t>(input.numel());
  // Since paddings are not trainable and fixed in forward, the gradient of
  // paddings makes no sense and we don't deal with it in backward.
  auto* d_table = weight_grad;
  auto* d_output = &out_grad;
  d_table->set_rows(ids);

  auto* d_table_value = d_table->mutable_value();
  d_table_value->Resize({ids_num, table_dim[1]});

  ctx.template Alloc<T>(d_table_value);

  d_table->set_height(table_dim[0]);

  auto* d_output_data = d_output->template data<T>();
  auto* d_table_data = d_table_value->template data<T>();

  auto d_output_dims = d_output->dims();
  auto d_output_dims_2d =
      flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
  PADDLE_ENFORCE_EQ(d_table_value->dims(),
                    d_output_dims_2d,
                    phi::errors::InvalidArgument(
                        "ShapeError: The shape of lookup_table@Grad and "
                        "output@Grad should be same. "
                        "But received lookup_table@Grad's shape = [%s], "
                        "output@Grad's shape = [%s].",
                        d_table_value->dims(),
                        d_output_dims_2d));
  int r = xpu::copy<T>(
      ctx.x_context(), d_output_data, d_table_data, d_output->numel());
  PADDLE_ENFORCE_XDNN_SUCCESS(r, "copy");
}
130 131 132 133
}  // namespace phi

PD_REGISTER_KERNEL(
    embedding_grad, XPU, ALL_LAYOUT, phi::EmbeddingGradKernel, float) {}
134 135 136 137 138
PD_REGISTER_KERNEL(embedding_sparse_grad,
                   XPU,
                   ALL_LAYOUT,
                   phi::EmbeddingSparseGradKernel,
                   float) {}