softmax_gpudnn.h 35.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/backends/gpu/gpu_info.h"
18 19
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/common/bfloat16.h"
20 21 22 23 24 25
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
#include "paddle/phi/kernels/primitive/kernel_primitives.h"

// See Note [ Why still include the fluid headers? ]
26 27
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
28

29
namespace phi {
30

31 32
using ScopedTensorDescriptor = paddle::platform::ScopedTensorDescriptor;
using GPUDNNDataLayout = paddle::platform::DataLayout;
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

// Vectorization trait 4 * sizeof(T)
template <typename T>
class VecT4 {};
template <>
class VecT4<double> {
 public:
  using Type = long4;
};
template <>
class VecT4<float> {
 public:
  using Type = int4;
};
template <>
48
class VecT4<phi::dtype::float16> {
49 50 51
 public:
  using Type = int2;
};
52 53 54 55 56
template <>
class VecT4<phi::dtype::bfloat16> {
 public:
  using Type = int2;
};
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

// Vectorization trait 2 * sizeof(T)
template <typename T>
class VecT2 {};
template <>
class VecT2<double> {
 public:
  using Type = int4;
};
template <>
class VecT2<float> {
 public:
  using Type = int2;
};
template <>
72
class VecT2<phi::dtype::float16> {
73 74 75
 public:
  using Type = int;
};
76 77 78 79 80
template <>
class VecT2<phi::dtype::bfloat16> {
 public:
  using Type = int;
};
81 82 83 84 85 86 87 88 89 90 91 92 93

static inline int log2_ceil(int value) {
  int log2_value = 0;
  while ((1 << log2_value) < value) ++log2_value;
  return log2_value;
}

template <typename T, int BatchSize, int WarpSize>
__device__ __forceinline__ void WarpReduceSum(T* sum) {
#pragma unroll
  for (int offset = WarpSize / 2; offset > 0; offset /= 2) {
#pragma unroll
    for (int i = 0; i < BatchSize; ++i) {
94 95
      T sum_val =
          paddle::platform::CudaShuffleXorSync(0xFFFFFFFF, sum[i], offset);
96 97 98 99 100 101 102 103 104 105 106
      sum[i] = sum[i] + sum_val;
    }
  }
}

template <typename T, int BatchSize, int WarpSize>
__device__ __forceinline__ void WarpReduceMax(T* sum) {
#pragma unroll
  for (int offset = WarpSize / 2; offset > 0; offset /= 2) {
#pragma unroll
    for (int i = 0; i < BatchSize; ++i) {
107 108
      T max_val =
          paddle::platform::CudaShuffleXorSync(0xFFFFFFFF, sum[i], offset);
109 110 111 112 113
      sum[i] = max(sum[i], max_val);
    }
  }
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
template <typename Tx, typename Ty = Tx>
struct ReduceMaxFunctor {
  inline Ty initial() { return -std::numeric_limits<Ty>::infinity(); }

  __device__ __forceinline__ Ty operator()(const Ty& a, const Ty& b) const {
    return max(a, b);
  }
};

template <typename Tx, typename Ty = Tx>
struct ExpSubFunctor {
  HOSTDEVICE inline ExpSubFunctor() { y = static_cast<Tx>(0.0f); }

  HOSTDEVICE explicit inline ExpSubFunctor(Tx y) : y((Tx)(y)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(std::exp(x - y));
  }

 private:
  Tx y;
};

template <typename Tx, typename Ty = Tx>
struct ExpMulFunctor {
  HOSTDEVICE inline ExpMulFunctor() { y = static_cast<Tx>(1.0f); }

  HOSTDEVICE explicit inline ExpMulFunctor(Tx y) : y((Tx)(y)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(std::exp(x) * y);
  }

 private:
  Tx y;
};

template <typename Tx, typename Ty = Tx>
struct UnarySubFunctor {
  HOSTDEVICE inline UnarySubFunctor() { y = static_cast<Tx>(0.0f); }

  HOSTDEVICE explicit inline UnarySubFunctor(Tx y) : y((Tx)(y)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(x - y);
  }

 private:
  Tx y;
};

template <typename Tx, typename Ty = Tx>
struct UnaryLogFunctor {
  HOSTDEVICE inline UnaryLogFunctor() {}

  HOSTDEVICE explicit inline UnaryLogFunctor(int n) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(std::log(x));
  }
};

template <typename Tx, typename Ty>
struct DataTransFunctor {
  HOSTDEVICE inline DataTransFunctor() {}

  HOSTDEVICE explicit inline DataTransFunctor(int n) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return x == -std::numeric_limits<Tx>::infinity()
               ? -std::numeric_limits<Ty>::infinity()
               : static_cast<Ty>(x);
  }
};

template <typename Tx, typename Ty = Tx>
struct UnaryDivFunctor {
  HOSTDEVICE inline UnaryDivFunctor() { n_inv = static_cast<Tx>(1.0f); }

  HOSTDEVICE explicit inline UnaryDivFunctor(Tx n) : n_inv((Tx)(1.0 / n)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(x * n_inv);
  }

 private:
  Tx n_inv;
};

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
template <typename Tx, typename Ty = Tx>
struct SoftmaxForwardFunctor {
  HOSTDEVICE inline SoftmaxForwardFunctor(Tx max, Tx sum)
      : max(max), sum(sum) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(std::exp(x - max) / sum);
  }

 private:
  Tx max;
  Tx sum;
};

template <typename Tx, typename Ty = Tx>
struct SoftmaxBackwardFunctor {
  HOSTDEVICE inline SoftmaxBackwardFunctor(Tx sum) : sum(sum) {}

  HOSTDEVICE inline Ty operator()(const Tx& grad_out, const Tx& out) const {
    return static_cast<Ty>(out * (grad_out - sum));
  }

 private:
  Tx sum;
};

template <typename Tx, typename Ty = Tx>
struct LogSoftmaxForwardFunctor {
  HOSTDEVICE inline LogSoftmaxForwardFunctor(Tx max, Tx sum)
      : max(max), log_sum(std::log(sum)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(x - max - log_sum);
  }

 private:
  Tx max;
  Tx log_sum;
};

template <typename Tx, typename Ty = Tx>
struct LogSoftmaxBackwardFunctor {
  HOSTDEVICE inline LogSoftmaxBackwardFunctor(Tx sum) : sum(sum) {}

  HOSTDEVICE inline Ty operator()(const Tx& grad_out, const Tx& out) const {
    return static_cast<Ty>(grad_out - std::exp(out) * sum);
  }

 private:
  Tx sum;
};

255 256 257 258 259 260 261 262 263 264
/*
Core function of computing softmax forward for axis=-1.
The computation includes
  - Compute maximum of batch: maxvalue_{i} = max_j src_{i,j}
  - Compute sum of exp batch: s_{i} = sum_{j}{ exp(src_{i,j} - maxvalue_{i} }
  - Compute: (a_{i,j} - maxvalue_{i}) / s_{i}
One warp (32 threads) is used to compute 1 or 2 batch (kBatchSize).
For reduction max (sum), firstly compute max (sum) to one warp, then use shuffle
api to compute max (sum) in one warp.
*/
265 266 267 268
template <typename T,
          typename VecT,
          typename AccT,
          int Log2Elements,
269
          bool LogMode = false>
270 271 272 273
__global__ void WarpSoftmaxForward(T* softmax,
                                   const T* src,
                                   const int batch_size,
                                   const int stride,
274 275 276 277
                                   const int element_count) {
  constexpr int kDimCeil = 1 << Log2Elements;
  constexpr int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
  constexpr int kVSize = sizeof(VecT) / sizeof(T);
278 279
  constexpr int kLoops = kDimCeil / kWarpSize;
  constexpr int kLoopsV = (kLoops >= kVSize) ? (kLoops / kVSize) : 1;
280 281
  constexpr int kBatchSize = (kDimCeil <= 32) ? 2 : 1;
  int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * kBatchSize;
282 283 284 285
  constexpr int kStep = kBatchSize * kLoopsV * kVSize;
  constexpr int kVItem = kLoopsV * kVSize;
  constexpr AccT kLowInf = -std::numeric_limits<AccT>::infinity();
  using kMode = kps::details::ReduceMode;
286 287 288 289 290 291 292 293 294

  // max index to read
  int idx_max_v[kBatchSize];
#pragma unroll
  for (int i = 0; i < kBatchSize; i++) {
    int idx_max = ((i + first_batch) < batch_size) ? element_count : 0;
    idx_max_v[i] = idx_max / kVSize;
  }

F
Feng Xing 已提交
295
  // data src
296 297
  AccT srcdata[kBatchSize][kLoopsV][kVSize];
  T src_tmp[kBatchSize][kLoopsV][kVSize];
F
Feng Xing 已提交
298
  kps::Init<AccT, kStep>(&srcdata[0][0][0], kLowInf);
299
  kps::Init<T, kStep>(&src_tmp[0][0][0], -std::numeric_limits<T>::infinity());
F
Feng Xing 已提交
300 301 302 303 304 305 306 307 308 309 310 311

  // data dst
  T out_tmp[kBatchSize][kLoopsV][kVSize];

  // max value
  AccT max[kBatchSize];
  kps::Init<AccT, kBatchSize>(&max[0], kLowInf);

  // sum value
  AccT sum[kBatchSize] = {0};

// read data from global memory
312 313
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
F
Feng Xing 已提交
314 315
    const VecT* src_v =
        reinterpret_cast<const VecT*>(&src[(first_batch + i) * stride]);
316 317 318 319 320
    VecT* reg_v = reinterpret_cast<VecT*>(&src_tmp[i][0][0]);
    kps::ReadData<VecT, VecT, kLoopsV, 1, 1, true>(
        &reg_v[0], &src_v[0], idx_max_v[i], 0, kWarpSize, 1);
    kps::ElementwiseUnary<T, AccT, kVItem, 1, 1, DataTransFunctor<T, AccT>>(
        &srcdata[i][0][0], &src_tmp[i][0][0], DataTransFunctor<T, AccT>());
321 322
  }

323
  // compute max
324 325 326 327 328 329 330
  kps::Reduce<AccT,
              kVItem,
              kBatchSize,
              1,
              ReduceMaxFunctor<AccT>,
              kMode::kLocalMode>(
      &max[0], &srcdata[0][0][0], ReduceMaxFunctor<AccT>(), true);
331
  WarpReduceMax<AccT, kBatchSize, kWarpSize>(max);
332

333 334
// compute sum
#pragma unroll
335
  for (int i = 0; i < kBatchSize; ++i) {
336 337
    kps::ElementwiseUnary<AccT, AccT, kVItem, 1, 1, ExpSubFunctor<AccT>>(
        &srcdata[i][0][0], &srcdata[i][0][0], ExpSubFunctor<AccT>(max[i]));
338
  }
339 340 341 342 343 344 345
  kps::Reduce<AccT,
              kVItem,
              kBatchSize,
              1,
              kps::AddFunctor<AccT>,
              kMode::kLocalMode>(
      &sum[0], &srcdata[0][0][0], kps::AddFunctor<AccT>(), true);
346 347
  WarpReduceSum<AccT, kBatchSize, kWarpSize>(sum);

F
Feng Xing 已提交
348
// write data to global memory
349 350
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
F
Feng Xing 已提交
351 352 353
    VecT* softmax_v =
        reinterpret_cast<VecT*>(&softmax[(first_batch + i) * stride]);
    VecT* reg_v = reinterpret_cast<VecT*>(&out_tmp[i][0][0]);
354 355 356 357
    kps::ElementwiseUnary<AccT, T, kVItem, 1, 1, UnaryDivFunctor<AccT>>(
        &out_tmp[i][0][0], &srcdata[i][0][0], UnaryDivFunctor<AccT>(sum[i]));
    kps::WriteData<VecT, VecT, kLoopsV, 1, 1, true>(
        &softmax_v[0], &reg_v[0], idx_max_v[i], 0, kWarpSize, 1);
358 359 360 361 362 363 364 365 366 367 368 369
  }
}

/*
Core function of computing softmax backward for axis=-1.
The computation includes
  - Compute sum of exp batch: s_{i} = sum_{j} {src_{i,j} * grad_{i,j}
  - Compute src_{i,j} * ( grad_{i,j}) - s_{i} )
One warp (32 threads) is used to compute 1 or 2 batch (kBatchSize).
For reduction max (sum), firstly compute max (sum) to one warp, then use shuffle
api to compute max (sum) in one warp.
*/
370 371 372 373
template <typename T,
          typename VecT,
          typename AccT,
          int Log2Elements,
374
          bool LogMode = false>
375 376 377 378 379
__global__ void WarpSoftmaxBackward(T* dst,
                                    const T* grad,
                                    const T* src,
                                    int batch_size,
                                    int stride,
380 381 382 383
                                    int element_count) {
  constexpr int kVSize = sizeof(VecT) / sizeof(T);
  constexpr int kDimCeil = 1 << Log2Elements;
  constexpr int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
384
  constexpr int kLoops = kDimCeil / kWarpSize;
385
  constexpr int kBatchSize = (kDimCeil <= 128) ? 2 : 1;
386
  constexpr int kLoopsV = (kLoops >= kVSize) ? (kLoops / kVSize) : 1;
387 388
  int element_count_v = element_count / kVSize;
  int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * kBatchSize;
389 390 391 392 393 394 395 396
  int local_batches = min(batch_size - first_batch, kBatchSize);

  // max index to read
  int idx_max_v[kBatchSize];
#pragma unroll
  for (int i = 0; i < kBatchSize; i++) {
    int idx_max = ((i + first_batch) < batch_size) ? element_count : 0;
    idx_max_v[i] = idx_max / kVSize;
397 398 399
  }

  // read data from global memory
400 401 402 403 404 405 406 407
  VecT src_reg[kBatchSize][kLoopsV];
  VecT grad_reg[kBatchSize][kLoopsV];
  VecT k_value;
  for (int s = 0; s < kVSize; s++) {
    reinterpret_cast<T*>(&k_value)[s] = 0.0;
  }
  kps::Init<VecT, kBatchSize * kLoopsV>(&src_reg[0][0], k_value);
  kps::Init<VecT, kBatchSize * kLoopsV>(&grad_reg[0][0], k_value);
408
#pragma unroll
409 410 411 412 413 414 415 416 417
  for (int i = 0; i < kBatchSize; ++i) {
    int flag = i < local_batches ? 1 : 0;
    int ptr = (first_batch + i) * stride;
    const VecT* src_v = reinterpret_cast<const VecT*>(&src[ptr]);
    const VecT* grad_v = reinterpret_cast<const VecT*>(&grad[ptr]);
    kps::ReadData<VecT, VecT, kLoopsV, 1, 1, true>(
        &src_reg[i][0], &src_v[0], idx_max_v[i], 0, kWarpSize, flag);
    kps::ReadData<VecT, VecT, kLoopsV, 1, 1, true>(
        &grad_reg[i][0], &grad_v[0], idx_max_v[i], 0, kWarpSize, flag);
418 419
  }

420 421 422 423 424 425 426 427 428 429 430 431
  // change T to AccT
  AccT src_tmp[kBatchSize][kLoopsV][kVSize];
  AccT grad_tmp[kBatchSize][kLoopsV][kVSize];
  const T* src_ptr = reinterpret_cast<const T*>(&src_reg[0][0]);
  const T* grad_ptr = reinterpret_cast<const T*>(&grad_reg[0][0]);
  constexpr int kStep = kBatchSize * kLoopsV * kVSize;
  constexpr int kVItem = kLoopsV * kVSize;
  kps::ElementwiseUnary<T, AccT, kStep, 1, 1, DataTransFunctor<T, AccT>>(
      &src_tmp[0][0][0], &src_ptr[0], DataTransFunctor<T, AccT>());
  kps::ElementwiseUnary<T, AccT, kStep, 1, 1, DataTransFunctor<T, AccT>>(
      &grad_tmp[0][0][0], &grad_ptr[0], DataTransFunctor<T, AccT>());

432 433
  // compute sum
  AccT sum[kBatchSize]{0.0};
434 435 436 437 438
  AccT sum_tmp[kBatchSize][kLoopsV][kVSize];
  AccT* gradptr = reinterpret_cast<AccT*>(&grad_tmp[0][0][0]);
  AccT* srcptr = reinterpret_cast<AccT*>(&src_tmp[0][0][0]);
  kps::ElementwiseBinary<AccT, AccT, kStep, 1, 1, kps::MulFunctor<AccT>>(
      &sum_tmp[0][0][0], &gradptr[0], &srcptr[0], kps::MulFunctor<AccT>());
439 440 441 442 443
  kps::Reduce<AccT,
              kVItem,
              kBatchSize,
              1,
              kps::AddFunctor<AccT>,
444 445
              kps::details::ReduceMode::kLocalMode>(
      &sum[0], &sum_tmp[0][0][0], kps::AddFunctor<AccT>(), true);
446 447
  WarpReduceSum<AccT, kBatchSize, kWarpSize>(sum);

448 449 450
  // write result to global memory
  AccT out[kBatchSize][kLoopsV][kVSize];
  T out_tmp[kBatchSize][kLoopsV][kVSize];
451 452 453
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
    if (i >= local_batches) break;
454 455 456 457 458 459
    AccT* gradptr = reinterpret_cast<AccT*>(&grad_tmp[i][0][0]);
    AccT* srcptr = reinterpret_cast<AccT*>(&src_tmp[i][0][0]);
    kps::ElementwiseUnary<AccT, AccT, kVItem, 1, 1, UnarySubFunctor<AccT>>(
        &out[i][0][0], &gradptr[0], UnarySubFunctor<AccT>(sum[i]));
    kps::ElementwiseBinary<AccT, T, kVItem, 1, 1, kps::MulFunctor<AccT>>(
        &out_tmp[i][0][0], &srcptr[0], &out[i][0][0], kps::MulFunctor<AccT>());
460
    VecT* dst_v = reinterpret_cast<VecT*>(&dst[(first_batch + i) * stride]);
461 462 463
    VecT* reg_v = reinterpret_cast<VecT*>(&out_tmp[i][0][0]);
    kps::WriteData<VecT, VecT, kLoopsV, 1, 1, true>(
        &dst_v[0], &reg_v[0], idx_max_v[i], 0, kWarpSize, 1);
464 465 466 467 468
  }
}

#define SOFTMAX_WARP_FORWARD_CASE(Log2Elements, AccT)                      \
  case Log2Elements:                                                       \
469 470 471 472
    WarpSoftmaxForward<T,                                                  \
                       VecT,                                               \
                       AccT,                                               \
                       Log2Elements,                                       \
473 474 475 476 477 478 479 480
                       LogMode><<<blocks, threads, 0, dev_ctx.stream()>>>( \
        dst, src, batch_size, stride, element_count);                      \
    break;

/*
  Wrapper of softmax formward with template instantiation on size of input.
*/
template <typename T, typename VecT, bool LogMode>
481 482 483 484 485 486 487 488
void SwitchWarpSoftmaxForward(const int blocks,
                              const dim3 threads,
                              const GPUContext& dev_ctx,
                              T* dst,
                              const T* src,
                              const int batch_size,
                              const int stride,
                              const int element_count,
489
                              int Log2Elements) {
490
  using AccT = typename phi::dtype::MPTypeTrait<T>::Type;
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
  switch (Log2Elements) {
    SOFTMAX_WARP_FORWARD_CASE(0, AccT);
    SOFTMAX_WARP_FORWARD_CASE(1, AccT);
    SOFTMAX_WARP_FORWARD_CASE(2, AccT);
    SOFTMAX_WARP_FORWARD_CASE(3, AccT);
    SOFTMAX_WARP_FORWARD_CASE(4, AccT);
    SOFTMAX_WARP_FORWARD_CASE(5, AccT);
    SOFTMAX_WARP_FORWARD_CASE(6, AccT);
    SOFTMAX_WARP_FORWARD_CASE(7, AccT);
    SOFTMAX_WARP_FORWARD_CASE(8, AccT);
    SOFTMAX_WARP_FORWARD_CASE(9, AccT);
    default:
      break;
  }
}

#define SOFTMAX_WARP_BACKWARD_CASE(Log2Elements, AccT)                      \
  case Log2Elements:                                                        \
509 510 511 512
    WarpSoftmaxBackward<T,                                                  \
                        VecT,                                               \
                        AccT,                                               \
                        Log2Elements,                                       \
513 514 515 516 517 518 519 520
                        LogMode><<<blocks, threads, 0, dev_ctx.stream()>>>( \
        dst, grad, src, batch_size, stride, element_count);                 \
    break;

/*
Wrapper of softmax backward with template instantiation on size of input.
*/
template <typename T, typename VecT, bool LogMode>
521 522 523 524 525 526 527 528 529 530 531
void SwitchWarpSoftmaxBackward(const int blocks,
                               const dim3 threads,
                               const GPUContext& dev_ctx,
                               T* dst,
                               const T* grad,
                               const T* src,
                               const int batch_size,
                               const int stride,
                               const int element_count,
                               int Log2Elements) {
  using AccT = typename phi::dtype::MPTypeTrait<T>::Type;
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
  switch (Log2Elements) {
    SOFTMAX_WARP_BACKWARD_CASE(0, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(1, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(2, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(3, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(4, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(5, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(6, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(7, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(8, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(9, AccT);
    default:
      break;
  }
}

#undef SOFTMAX_WARP_FORWARD_CASE
#undef SOFTMAX_WARP_BACKWARD_CASE

551 552 553 554 555
/**
 * <NormalSoftmaxKernel>
 * Better performence when axis != -1
 */

556 557 558 559
static void GetGridDim(
    int high_dim, int mid_dim, int low_dim, const dim3& block, dim3* grid) {
  int device_id = phi::backends::gpu::GetCurrentDeviceId();
  int max_mp = phi::backends::gpu::GetGPUMultiProcessors(device_id);
560
  int max_threads_per_mp =
561
      phi::backends::gpu::GetGPUMaxThreadsPerMultiProcessor(device_id);
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
  int max_threads = max_threads_per_mp * max_mp;
  int num_threads = block.x * block.y;
  int max_num_blocks = max_threads / num_threads;

  int grid_x = (low_dim + block.x - 1) / block.x;
  grid_x = std::min(grid_x, max_num_blocks);
  int grid_y = (max_num_blocks + grid_x - 1) / grid_x;
  grid_y = std::min(grid_y, high_dim);
  grid->x = grid_x;
  grid->y = grid_y;
}

static void GetBlockDim(int mid_dim, int low_dim, dim3* block) {
#ifdef __HIPCC__
  constexpr int max_num_threads = 256;
#else
  constexpr int max_num_threads = 1024;
#endif
  int block_x = 1 << log2_ceil(low_dim);
  int block_y = 1 << log2_ceil(mid_dim);
  block->x = std::min(block_x, 32);
  block->y = std::min(block_y, static_cast<int>(max_num_threads / block->x));
  block->x = std::min(block_x, static_cast<int>(max_num_threads / block->y));
}

587 588
static void GetLaunchConfig(
    int high_dim, int mid_dim, int low_dim, dim3* grid, dim3* block) {
589 590 591 592
  GetBlockDim(mid_dim, low_dim, block);
  GetGridDim(high_dim, mid_dim, low_dim, *block, grid);
}

593 594
template <typename T,
          typename AccT,
595
          template <typename, typename> class Functor>
596 597
__global__ void NormalSoftmaxForward(
    T* output, const T* input, int high_dim, int mid_dim, int low_dim) {
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
  using kMode = kps::details::ReduceMode;
  const int high_stride = mid_dim * low_dim;
  const int mid_stride = low_dim;
  for (int high_id = blockIdx.y; high_id < high_dim; high_id += gridDim.y) {
    for (int low_id = blockIdx.x * blockDim.x + threadIdx.x; low_id < low_dim;
         low_id += blockDim.x * gridDim.x) {
      const int input_offset = high_id * high_stride + low_id;

      // 1. reduce max
      AccT max_value = -std::numeric_limits<AccT>::infinity();
      AccT value = -std::numeric_limits<AccT>::infinity();
      for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
        value = static_cast<AccT>(input[input_offset + mid_id * mid_stride]);
        max_value = kps::MaxFunctor<AccT>()(max_value, value);
      }

      if (blockDim.y > 1) {
        kps::Reduce<AccT, 1, 1, 1, kps::MaxFunctor<AccT>, kMode::kGlobalMode>(
            &max_value, &max_value, kps::MaxFunctor<AccT>(), false);
      }

      // 2. reduce sum
      AccT sum = 0;
      for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
        value = static_cast<AccT>(input[input_offset + mid_id * mid_stride]);
        sum += std::exp(value - max_value);
      }
      if (blockDim.y > 1) {
        kps::Reduce<AccT, 1, 1, 1, kps::AddFunctor<AccT>, kMode::kGlobalMode>(
            &sum, &sum, kps::AddFunctor<AccT>(), false);
      }

      // 3. (log)softmax
      Functor<AccT, T> functor(max_value, sum);
      for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
        int data_offset = input_offset + mid_id * mid_stride;
        output[data_offset] = functor(static_cast<AccT>(input[data_offset]));
      }
    }
  }
}

640 641
template <typename T,
          typename AccT,
642
          template <typename, typename> class Functor>
643 644 645 646 647 648
__global__ void NormalSoftmaxBackward(T* input_grad,
                                      const T* output_grad,
                                      const T* output,
                                      int high_dim,
                                      int mid_dim,
                                      int low_dim) {
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
  using kMode = kps::details::ReduceMode;
  const int high_stride = mid_dim * low_dim;
  const int mid_stride = low_dim;
  for (int high_id = blockIdx.y; high_id < high_dim; high_id += gridDim.y) {
    for (int low_id = blockIdx.x * blockDim.x + threadIdx.x; low_id < low_dim;
         low_id += blockDim.x * gridDim.x) {
      const int grad_offset = high_id * high_stride + low_id;

      // 1. reduce sum
      AccT sum = 0;
      for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
        int data_offset = grad_offset + mid_id * mid_stride;
        sum += static_cast<AccT>(output_grad[data_offset]) *
               static_cast<AccT>(output[data_offset]);
      }
      if (blockDim.y > 1) {
        kps::Reduce<AccT, 1, 1, 1, kps::AddFunctor<AccT>, kMode::kGlobalMode>(
            &sum, &sum, kps::AddFunctor<AccT>(), false);
      }

      // 2. (log)softmax backward
      Functor<AccT, T> functor(sum);
      for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
        int data_offset = grad_offset + mid_id * mid_stride;
        input_grad[data_offset] =
            functor(static_cast<AccT>(output_grad[data_offset]),
                    static_cast<AccT>(output[data_offset]));
      }
    }
  }
}

681
template <typename T, bool LogMode = false>
682 683 684 685 686 687 688
void LaunchNormalSoftmaxForward(const GPUContext& dev_ctx,
                                T* output_data,
                                const T* input_data,
                                int high_dim,
                                int mid_dim,
                                int low_dim) {
  using AccT = typename phi::dtype::MPTypeTrait<T>::Type;
689 690 691 692
  dim3 grid, block;
  GetLaunchConfig(high_dim, mid_dim, low_dim, &grid, &block);
  if (LogMode) {
    NormalSoftmaxForward<
693 694
        T,
        AccT,
695 696 697 698
        LogSoftmaxForwardFunctor><<<grid, block, 0, dev_ctx.stream()>>>(
        output_data, input_data, high_dim, mid_dim, low_dim);
  } else {
    NormalSoftmaxForward<
699 700 701
        T,
        AccT,
        SoftmaxForwardFunctor><<<grid, block, 0, dev_ctx.stream()>>>(
702 703 704 705
        output_data, input_data, high_dim, mid_dim, low_dim);
  }
}

706
template <typename T, bool LogMode = false>
707 708 709 710 711 712 713 714
void LaunchNormalSoftmaxBackward(const GPUContext& dev_ctx,
                                 T* input_grad_data,
                                 const T* output_grad_data,
                                 const T* output_data,
                                 int high_dim,
                                 int mid_dim,
                                 int low_dim) {
  using AccT = typename phi::dtype::MPTypeTrait<T>::Type;
715 716 717 718
  dim3 grid, block;
  GetLaunchConfig(high_dim, mid_dim, low_dim, &grid, &block);
  if (LogMode) {
    NormalSoftmaxBackward<
719 720
        T,
        AccT,
721
        LogSoftmaxBackwardFunctor><<<grid, block, 0, dev_ctx.stream()>>>(
722 723 724 725 726
        input_grad_data,
        output_grad_data,
        output_data,
        high_dim,
        mid_dim,
727 728 729
        low_dim);
  } else {
    NormalSoftmaxBackward<
730 731 732 733 734 735 736 737
        T,
        AccT,
        SoftmaxBackwardFunctor><<<grid, block, 0, dev_ctx.stream()>>>(
        input_grad_data,
        output_grad_data,
        output_data,
        high_dim,
        mid_dim,
738 739 740 741
        low_dim);
  }
}

742
template <typename T, bool LogMode = false>
743 744 745 746
void SoftmaxForwardCUDAKernelDriver(const GPUContext& dev_ctx,
                                    const DenseTensor& x,
                                    const int input_axis,
                                    DenseTensor* out) {
747 748 749 750
  auto* out_data = out->data<T>();

  auto dims = x.dims();
  const int rank = dims.size();
751
  const int axis = phi::funcs::CanonicalAxis(input_axis, rank);
752
  const int dim = dims[axis];
753 754
  const int N = phi::funcs::SizeToAxis(axis, dims);
  const int D = phi::funcs::SizeOutAxis(axis, dims);
755

Y
Yanxing Shi 已提交
756
  constexpr int max_dim = 512;
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
  constexpr int warps_per_block = 4;

  if (D == 1 && dim <= max_dim && sizeof(T) <= 4) {
    const int kDimLog2 = static_cast<int>(log2_ceil(dim));
    const int kDimCeil = 1 << kDimLog2;
    int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
    int batches_per_warp = (kDimCeil <= 32) ? 2 : 1;

    // use 128 threads per block to maximimize gpu utilization
    constexpr int threads_per_block = 128;

    int warps_per_block = (threads_per_block / kWarpSize);
    int batches_per_block = warps_per_block * batches_per_warp;
    int blocks = (N + batches_per_block - 1) / batches_per_block;
    dim3 threads(kWarpSize, warps_per_block, 1);

    // vectorization read/write
    using T4 = typename VecT4<T>::Type;
    using T2 = typename VecT2<T>::Type;
776

777
    if (dim % 4 == 0) {
778 779 780 781 782 783 784 785 786
      SwitchWarpSoftmaxForward<T, T4, LogMode>(blocks,
                                               threads,
                                               dev_ctx,
                                               out_data,
                                               x.data<T>(),
                                               N,
                                               dim,
                                               dim,
                                               kDimLog2);
787
    } else if (dim % 2 == 0) {
788 789 790 791 792 793 794 795 796
      SwitchWarpSoftmaxForward<T, T2, LogMode>(blocks,
                                               threads,
                                               dev_ctx,
                                               out_data,
                                               x.data<T>(),
                                               N,
                                               dim,
                                               dim,
                                               kDimLog2);
797
    } else {
798 799 800 801 802 803 804 805 806
      SwitchWarpSoftmaxForward<T, T, LogMode>(blocks,
                                              threads,
                                              dev_ctx,
                                              out_data,
                                              x.data<T>(),
                                              N,
                                              dim,
                                              dim,
                                              kDimLog2);
807
    }
808
  } else if (D > 1) {
809 810
    LaunchNormalSoftmaxForward<T, LogMode>(
        dev_ctx, out_data, x.data<T>(), N, dim, D);
811 812 813
  } else {
    ScopedTensorDescriptor desc;
    std::vector<int> tensor_dims = {N, dim, D, 1};
814
    GPUDNNDataLayout layout = GPUDNNDataLayout::kNCHW;
815 816 817 818 819 820 821 822 823 824 825 826
#ifdef PADDLE_WITH_HIP
    miopenTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);
#else
    cudnnTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);
#endif

    auto handle = dev_ctx.cudnn_handle();

#ifdef PADDLE_WITH_HIP
    auto mode = axis == rank - 1 ? MIOPEN_SOFTMAX_MODE_INSTANCE
                                 : MIOPEN_SOFTMAX_MODE_CHANNEL;
    if (LogMode) {
827 828 829 830 831 832 833 834 835 836 837
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::miopenSoftmaxForward_V2(
              handle,
              paddle::platform::CudnnDataType<T>::kOne(),
              desc_,
              x.data<T>(),
              paddle::platform::CudnnDataType<T>::kZero(),
              desc_,
              out_data,
              MIOPEN_SOFTMAX_LOG,
              mode));
838
    } else {
839 840 841 842 843 844 845 846 847 848 849
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::miopenSoftmaxForward_V2(
              handle,
              paddle::platform::CudnnDataType<T>::kOne(),
              desc_,
              x.data<T>(),
              paddle::platform::CudnnDataType<T>::kZero(),
              desc_,
              out_data,
              MIOPEN_SOFTMAX_ACCURATE,
              mode));
850 851 852 853 854
    }
#else
    auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
                                 : CUDNN_SOFTMAX_MODE_CHANNEL;
    if (LogMode) {
855 856 857 858 859 860 861 862 863
      PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cudnnSoftmaxForward(
          handle,
          CUDNN_SOFTMAX_LOG,
          mode,
          paddle::platform::CudnnDataType<T>::kOne(),
          desc_,
          x.data<T>(),
          paddle::platform::CudnnDataType<T>::kZero(),
          desc_,
864 865
          out_data));
    } else {
866 867 868 869 870 871 872 873 874 875
      PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cudnnSoftmaxForward(
          handle,
          CUDNN_SOFTMAX_ACCURATE,
          mode,
          paddle::platform::CudnnDataType<T>::kOne(),
          desc_,
          x.data<T>(),
          paddle::platform::CudnnDataType<T>::kZero(),
          desc_,
          out_data));
876 877 878 879 880 881
    }
#endif
  }
}

template <typename T, bool LogMode = false>
882 883 884 885 886
void SoftmaxBackwardCUDAKernelDriver(const GPUContext& dev_ctx,
                                     const DenseTensor& out,
                                     const DenseTensor& dout,
                                     const int input_axis,
                                     DenseTensor* dx) {
887 888 889 890
  auto* dx_data = dx->data<T>();

  auto dims = out.dims();
  const int rank = dims.size();
891
  const int axis = phi::funcs::CanonicalAxis(input_axis, rank);
892
  const int dim = dims[axis];
893 894
  const int N = phi::funcs::SizeToAxis(axis, dims);
  const int D = phi::funcs::SizeOutAxis(axis, dims);
895

Y
Yanxing Shi 已提交
896
  constexpr int max_dim = 512;
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
  constexpr int warps_per_block = 4;

  if (D == 1 && dim <= max_dim && sizeof(T) <= 4) {
    const int kDimLog2 = log2_ceil(dim);
    const int kDimCeil = 1 << kDimLog2;
    int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
    int batches_per_warp = (kDimCeil <= 128) ? 2 : 1;
    constexpr int threads_per_block = 128;

    int warps_per_block = (threads_per_block / kWarpSize);
    int batches_per_block = warps_per_block * batches_per_warp;
    int blocks = (N + batches_per_block - 1) / batches_per_block;
    dim3 threads(kWarpSize, warps_per_block, 1);

    // vectorization read/write
    using T4 = typename VecT4<T>::Type;
    using T2 = typename VecT2<T>::Type;
    if (dim % 4 == 0) {
915 916 917 918 919 920 921 922 923 924
      SwitchWarpSoftmaxBackward<T, T4, LogMode>(blocks,
                                                threads,
                                                dev_ctx,
                                                dx_data,
                                                dout.data<T>(),
                                                out.data<T>(),
                                                N,
                                                dim,
                                                dim,
                                                kDimLog2);
925
    } else if (dim % 2 == 0) {
926 927 928 929 930 931 932 933 934 935
      SwitchWarpSoftmaxBackward<T, T2, LogMode>(blocks,
                                                threads,
                                                dev_ctx,
                                                dx_data,
                                                dout.data<T>(),
                                                out.data<T>(),
                                                N,
                                                dim,
                                                dim,
                                                kDimLog2);
936
    } else {
937 938 939 940 941 942 943 944 945 946
      SwitchWarpSoftmaxBackward<T, T, LogMode>(blocks,
                                               threads,
                                               dev_ctx,
                                               dx_data,
                                               dout.data<T>(),
                                               out.data<T>(),
                                               N,
                                               dim,
                                               dim,
                                               kDimLog2);
947
    }
948
  } else if (D > 1) {
949 950
    LaunchNormalSoftmaxBackward<T, LogMode>(
        dev_ctx, dx_data, dout.data<T>(), out.data<T>(), N, dim, D);
951 952 953
  } else {
    ScopedTensorDescriptor desc;
    std::vector<int> tensor_dims = {N, dim, D, 1};
954
    GPUDNNDataLayout layout = GPUDNNDataLayout::kNCHW;
955 956 957 958 959 960 961 962 963 964 965 966
#ifdef PADDLE_WITH_HIP
    miopenTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);
#else
    cudnnTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);
#endif

    auto handle = dev_ctx.cudnn_handle();

#ifdef PADDLE_WITH_HIP
    auto mode = axis == rank - 1 ? MIOPEN_SOFTMAX_MODE_INSTANCE
                                 : MIOPEN_SOFTMAX_MODE_CHANNEL;
    if (LogMode) {
967 968 969 970 971 972 973 974 975 976 977 978 979
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::miopenSoftmaxBackward_V2(
              handle,
              paddle::platform::CudnnDataType<T>::kOne(),
              desc_,
              out.data<T>(),
              desc_,
              dout.data<T>(),
              paddle::platform::CudnnDataType<T>::kZero(),
              desc_,
              dx_data,
              MIOPEN_SOFTMAX_LOG,
              mode));
980
    } else {
981 982 983 984 985 986 987 988 989 990 991 992 993
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::miopenSoftmaxBackward_V2(
              handle,
              paddle::platform::CudnnDataType<T>::kOne(),
              desc_,
              out.data<T>(),
              desc_,
              dout.data<T>(),
              paddle::platform::CudnnDataType<T>::kZero(),
              desc_,
              dx_data,
              MIOPEN_SOFTMAX_ACCURATE,
              mode));
994 995 996 997 998
    }
#else
    auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
                                 : CUDNN_SOFTMAX_MODE_CHANNEL;
    if (LogMode) {
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::cudnnSoftmaxBackward(
              handle,
              CUDNN_SOFTMAX_LOG,
              mode,
              paddle::platform::CudnnDataType<T>::kOne(),
              desc_,
              out.data<T>(),
              desc_,
              dout.data<T>(),
              paddle::platform::CudnnDataType<T>::kZero(),
              desc_,
              dx_data));
1012
    } else {
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::cudnnSoftmaxBackward(
              handle,
              CUDNN_SOFTMAX_ACCURATE,
              mode,
              paddle::platform::CudnnDataType<T>::kOne(),
              desc_,
              out.data<T>(),
              desc_,
              dout.data<T>(),
              paddle::platform::CudnnDataType<T>::kZero(),
              desc_,
              dx_data));
1026 1027 1028 1029 1030
    }
#endif
  }
}

1031
}  // namespace phi