test_functional_conv3d.py 16.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn.functional as F
from paddle import fluid
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
import numpy as np
import unittest
from unittest import TestCase


class TestFunctionalConv3D(TestCase):
    batch_size = 4
    spatial_shape = (8, 8, 8)
    dtype = "float32"

    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"

    def prepare(self):
        if isinstance(self.filter_shape, int):
44
            filter_shape = (self.filter_shape,) * 3
45 46 47 48
        else:
            filter_shape = tuple(self.filter_shape)

        self.weight = np.random.uniform(
49 50 51 52
            -1,
            1,
            (self.out_channels, self.in_channels // self.groups) + filter_shape,
        ).astype(self.dtype)
53
        if not self.no_bias:
54 55 56
            self.bias = np.random.uniform(-1, 1, (self.out_channels,)).astype(
                self.dtype
            )
57

58
        self.channel_last = self.data_format == "NDHWC"
59
        if self.channel_last:
60 61 62
            self.input_shape = (
                (self.batch_size,) + self.spatial_shape + (self.in_channels,)
            )
63
        else:
64 65 66 67
            self.input_shape = (
                self.batch_size,
                self.in_channels,
            ) + self.spatial_shape
68

69 70 71
        self.input = np.random.uniform(-1, 1, self.input_shape).astype(
            self.dtype
        )
72 73 74 75 76 77 78

    def static_graph_case_1(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                if self.channel_last:
79 80 81 82 83
                    x = fluid.data(
                        "input",
                        (-1, -1, -1, -1, self.in_channels),
                        dtype=self.dtype,
                    )
84
                else:
85 86 87 88 89
                    x = fluid.data(
                        "input",
                        (-1, self.in_channels, -1, -1, -1),
                        dtype=self.dtype,
                    )
90
                y = paddle.static.nn.conv3d(
91 92 93 94 95 96 97 98 99
                    x,
                    self.out_channels,
                    self.filter_shape,
                    stride=self.stride,
                    padding=self.padding,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=I.NumpyArrayInitializer(self.weight),
                    bias_attr=False
100 101
                    if self.no_bias
                    else I.NumpyArrayInitializer(self.bias),
102
                    act=self.act,
103 104
                    data_format=self.data_format,
                )
105 106
        exe = fluid.Executor(self.place)
        exe.run(start)
107
        (out,) = exe.run(main, feed={"input": self.input}, fetch_list=[y])
108 109 110 111 112 113 114 115
        return out

    def static_graph_case_2(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                if self.channel_last:
116 117 118 119 120
                    x = x = fluid.data(
                        "input",
                        (-1, -1, -1, -1, self.in_channels),
                        dtype=self.dtype,
                    )
121
                else:
122 123 124 125 126 127 128 129
                    x = fluid.data(
                        "input",
                        (-1, self.in_channels, -1, -1, -1),
                        dtype=self.dtype,
                    )
                weight = fluid.data(
                    "weight", self.weight.shape, dtype=self.dtype
                )
130 131
                if not self.no_bias:
                    bias = fluid.data("bias", self.bias.shape, dtype=self.dtype)
132 133 134 135 136 137 138 139 140 141
                y = F.conv3d(
                    x,
                    weight,
                    None if self.no_bias else bias,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    data_format=self.data_format,
                )
142 143 144 145

                if self.act == 'sigmoid':
                    y = F.sigmoid(y)

146 147 148 149 150
        exe = fluid.Executor(self.place)
        exe.run(start)
        feed_dict = {"input": self.input, "weight": self.weight}
        if not self.no_bias:
            feed_dict["bias"] = self.bias
151
        (out,) = exe.run(main, feed=feed_dict, fetch_list=[y])
152 153 154 155 156 157 158
        return out

    def dygraph_case(self):
        with dg.guard(self.place):
            x = dg.to_variable(self.input)
            weight = dg.to_variable(self.weight)
            bias = None if self.no_bias else dg.to_variable(self.bias)
159 160 161 162 163 164 165 166 167 168
            y = F.conv3d(
                x,
                weight,
                bias,
                padding=self.padding,
                stride=self.stride,
                dilation=self.dilation,
                groups=self.groups,
                data_format=self.data_format,
            )
169 170 171 172

            if self.act == 'sigmoid':
                y = F.sigmoid(y)

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
            out = y.numpy()
        return out

    def _test_identity(self):
        self.prepare()
        out1 = self.static_graph_case_1()
        out2 = self.static_graph_case_2()
        out3 = self.dygraph_case()
        np.testing.assert_array_almost_equal(out1, out2)
        np.testing.assert_array_almost_equal(out2, out3)

    def test_identity_cpu(self):
        self.place = fluid.CPUPlace()
        self._test_identity()

188 189 190
    @unittest.skipIf(
        not fluid.core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    def test_identity_gpu(self):
        self.place = fluid.CUDAPlace(0)
        self._test_identity()


class TestFunctionalConv3DError(TestCase):
    batch_size = 4
    spatial_shape = (8, 8, 8)
    dtype = "float32"

    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = "not_valid"
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"

    def test_exception(self):
        self.prepare()
        with self.assertRaises(ValueError):
            self.static_graph_case()

    def prepare(self):
        if isinstance(self.filter_shape, int):
220
            filter_shape = (self.filter_shape,) * 3
221 222
        else:
            filter_shape = tuple(self.filter_shape)
223 224 225 226 227
        self.weight_shape = (
            self.out_channels,
            self.in_channels // self.groups,
        ) + filter_shape
        self.bias_shape = (self.out_channels,)
228 229 230 231 232 233 234 235

    def static_graph_case(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                self.channel_last = self.data_format == "NDHWC"
                if self.channel_last:
236 237 238 239 240
                    x = x = fluid.data(
                        "input",
                        (-1, -1, -1, -1, self.in_channels),
                        dtype=self.dtype,
                    )
241
                else:
242 243 244 245 246 247 248 249
                    x = fluid.data(
                        "input",
                        (-1, self.in_channels, -1, -1, -1),
                        dtype=self.dtype,
                    )
                weight = fluid.data(
                    "weight", self.weight_shape, dtype=self.dtype
                )
250 251
                if not self.no_bias:
                    bias = fluid.data("bias", self.bias_shape, dtype=self.dtype)
252 253 254 255 256 257 258 259 260 261
                y = F.conv3d(
                    x,
                    weight,
                    None if self.no_bias else bias,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    data_format=self.data_format,
                )
262 263 264

                if self.act == 'sigmoid':
                    y = F.sigmoid(y)
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463


class TestFunctionalConv3DCase2(TestFunctionalConv3D):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [1, 2, 1]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"


class TestFunctionalConv3DCase3(TestFunctionalConv3D):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [1, 2, 3, 1, 2, 3]
        self.stride = 2
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"


class TestFunctionalConv3DCase4(TestFunctionalConv3D):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [1, 1, 2, 2, 3, 3]
        self.stride = 1
        self.dilation = 2
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"


class TestFunctionalConv3DCase5(TestFunctionalConv3D):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [[0, 0], [1, 1], [2, 2], [1, 1], [0, 0]]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"


class TestFunctionalConv3DCase6(TestFunctionalConv3D):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [[0, 0], [0, 0], [1, 1], [2, 2], [2, 2]]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


class TestFunctionalConv3DCase7(TestFunctionalConv3D):
    def setUp(self):
        self.in_channels = 6
        self.out_channels = 8
        self.filter_shape = 3
        self.padding = "same"
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


class TestFunctionalConv3DCase8(TestFunctionalConv3D):
    def setUp(self):
        self.in_channels = 6
        self.out_channels = 12
        self.filter_shape = 3
        self.padding = "valid"
        self.stride = 1
        self.dilation = 1
        self.groups = 6
        self.no_bias = True
        self.act = None
        self.use_cudnn = False
        self.data_format = "NCDHW"


class TestFunctionalConv3DErrorCase2(TestFunctionalConv3DError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [[0, 0], [1, 1], [1, 2], [3, 4], [5, 6]]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


class TestFunctionalConv3DErrorCase3(TestFunctionalConv3DError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = "same"
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "not_valid"


class TestFunctionalConv3DErrorCase4(TestFunctionalConv3DError):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 3
        self.filter_shape = 3
        self.padding = "same"
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


class TestFunctionalConv3DErrorCase7(TestFunctionalConv3DError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = "same"
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "not_valid"


class TestFunctionalConv3DErrorCase8(TestFunctionalConv3DError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [1, 2, 1, 2, 1]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


class TestFunctionalConv3DErrorCase9(TestFunctionalConv3DError):
    def setUp(self):
        self.in_channels = -5
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [[0, 0], [0, 0], [3, 2], [1, 2], [1, 1]]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


class TestFunctionalConv3DErrorCase10(TestFunctionalConv3DError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = "same"
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"


464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
class TestFunctionalConv3DErrorCase11(TestCase):
    def setUp(self):
        self.input = np.array([])
        self.filter = np.array([])
        self.num_filters = 0
        self.filter_size = 0
        self.bias = None
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.data_format = "NCDHW"

    def static_graph_case(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                x = fluid.data("input", self.input.shape, dtype=paddle.float32)
483
                y = paddle.static.nn.conv3d(
484 485 486 487 488 489 490 491 492 493 494 495 496 497
                    x,
                    self.num_filters,
                    self.filter_size,
                    stride=self.stride,
                    padding=self.padding,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=I.NumpyArrayInitializer(self.filter),
                    bias_attr=False
                    if self.bias is None
                    else I.NumpyArrayInitializer(self.bias),
                    act=None,
                    data_format=self.data_format,
                )
498 499
        exe = fluid.Executor()
        exe.run(start)
500
        (out,) = exe.run(main, feed={"input": self.input}, fetch_list=[y])
501 502 503 504 505 506
        return out

    def dygraph_case(self):
        with dg.guard():
            x = dg.to_variable(self.input, dtype=paddle.float32)
            w = dg.to_variable(self.filter, dtype=paddle.float32)
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
            b = (
                None
                if self.bias is None
                else dg.to_variable(self.bias, dtype=paddle.float32)
            )
            y = F.conv3d(
                x,
                w,
                b,
                padding=self.padding,
                stride=self.stride,
                dilation=self.dilation,
                groups=self.groups,
                data_format=self.data_format,
            )
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

    def test_dygraph_exception(self):
        with self.assertRaises(ValueError):
            self.dygraph_case()

    def test_static_exception(self):
        with self.assertRaises(ValueError):
            self.static_graph_case()


class TestFunctionalConv3DErrorCase12(TestFunctionalConv3DErrorCase11):
    def setUp(self):
        self.input = np.random.randn(1, 3, 3, 3, 3)
        self.filter = np.random.randn(3, 3, 1, 1, 1)
        self.num_filters = 3
        self.filter_size = 1
        self.bias = None
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 0
        self.data_format = "NCDHW"


546
if __name__ == "__main__":
H
hong 已提交
547
    paddle.enable_static()
548
    unittest.main()