test_newprofiler.py 7.3 KB
Newer Older
C
chenjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle
import paddle.profiler as profiler
Z
Zhang Ting 已提交
22 23 24
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.io import Dataset, DataLoader
C
chenjian 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130


class TestProfiler(unittest.TestCase):
    def test_profiler(self):
        def my_trace_back(prof):
            profiler.export_chrome_tracing('./test_profiler_chrometracing/')(
                prof)
            profiler.export_protobuf('./test_profiler_pb/')(prof)

        x_value = np.random.randn(2, 3, 3)
        x = paddle.to_tensor(
            x_value, stop_gradient=False, place=paddle.CPUPlace())
        y = x / 2.0
        ones_like_y = paddle.ones_like(y)
        with profiler.Profiler(targets=[profiler.ProfilerTarget.CPU], ) as prof:
            y = x / 2.0
        prof = None
        with profiler.Profiler(
                targets=[profiler.ProfilerTarget.CPU],
                scheduler=(1, 2)) as prof:
            with profiler.RecordEvent(name='test'):
                y = x / 2.0
        prof = None
        with profiler.Profiler(
                targets=[profiler.ProfilerTarget.CPU],
                scheduler=profiler.make_scheduler(
                    closed=0, ready=1, record=1, repeat=1),
                on_trace_ready=my_trace_back) as prof:
            y = x / 2.0
        prof = None
        with profiler.Profiler(
                targets=[profiler.ProfilerTarget.CPU],
                scheduler=profiler.make_scheduler(
                    closed=0, ready=0, record=2, repeat=1),
                on_trace_ready=my_trace_back) as prof:
            for i in range(3):
                y = x / 2.0
                prof.step()
        prof = None
        with profiler.Profiler(
                targets=[profiler.ProfilerTarget.CPU],
                scheduler=lambda x: profiler.ProfilerState.RECORD_AND_RETURN,
                on_trace_ready=my_trace_back) as prof:
            for i in range(2):
                y = x / 2.0
                prof.step()

        def my_sheduler(num_step):
            if num_step % 5 < 2:
                return profiler.ProfilerState.RECORD_AND_RETURN
            elif num_step % 5 < 3:
                return profiler.ProfilerState.READY
            elif num_step % 5 < 4:
                return profiler.ProfilerState.RECORD
            else:
                return profiler.ProfilerState.CLOSED

        def my_sheduler1(num_step):
            if num_step % 5 < 2:
                return profiler.ProfilerState.RECORD
            elif num_step % 5 < 3:
                return profiler.ProfilerState.READY
            elif num_step % 5 < 4:
                return profiler.ProfilerState.RECORD
            else:
                return profiler.ProfilerState.CLOSED

        prof = None
        with profiler.Profiler(
                targets=[profiler.ProfilerTarget.CPU],
                scheduler=lambda x: profiler.ProfilerState.RECORD_AND_RETURN,
                on_trace_ready=my_trace_back) as prof:
            for i in range(2):
                y = x / 2.0
                prof.step()
        prof = None
        with profiler.Profiler(
                targets=[profiler.ProfilerTarget.CPU],
                scheduler=my_sheduler,
                on_trace_ready=my_trace_back) as prof:
            for i in range(5):
                y = x / 2.0
                prof.step()
        prof = None
        with profiler.Profiler(
                targets=[profiler.ProfilerTarget.CPU],
                scheduler=my_sheduler1) as prof:
            for i in range(5):
                y = x / 2.0
                prof.step()
        prof = None
        with profiler.Profiler(
                targets=[profiler.ProfilerTarget.CPU],
                scheduler=profiler.make_scheduler(
                    closed=1, ready=1, record=2, repeat=1, skip_first=1),
                on_trace_ready=my_trace_back) as prof:
            for i in range(5):
                y = x / 2.0
                paddle.grad(outputs=y, inputs=[x], grad_outputs=ones_like_y)
                prof.step()

        prof.export(path='./test_profiler_pb.pb', format='pb')
        prof.summary()
        result = profiler.utils.load_profiler_result('./test_profiler_pb.pb')


131 132 133 134 135 136 137 138 139 140
class TestNvprof(unittest.TestCase):
    def test_nvprof(self):
        for i in range(10):
            paddle.fluid.profiler._nvprof_range(i, 10, 20)
            x_value = np.random.randn(2, 3, 3)
            x = paddle.to_tensor(
                x_value, stop_gradient=False, place=paddle.CPUPlace())
            y = x / 2.0


Z
Zhang Ting 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
class RandomDataset(Dataset):
    def __init__(self, num_samples):
        self.num_samples = num_samples

    def __getitem__(self, idx):
        image = np.random.random([100]).astype('float32')
        label = np.random.randint(0, 10 - 1, (1, )).astype('int64')
        return image, label

    def __len__(self):
        return self.num_samples


class SimpleNet(nn.Layer):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.fc = nn.Linear(100, 10)

    def forward(self, image, label=None):
        return self.fc(image)


class TestTimerOnly(unittest.TestCase):
    def test_with_dataloader(self):
        def train(step_num_samples=None):
            dataset = RandomDataset(20 * 4)
            simple_net = SimpleNet()
            opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                       parameters=simple_net.parameters())
            loader = DataLoader(
                dataset,
                batch_size=4,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            step_info = ''
            p = profiler.Profiler(timer_only=True)
            p.start()
            for i, (image, label) in enumerate(loader()):
                out = simple_net(image)
                loss = F.cross_entropy(out, label)
                avg_loss = paddle.mean(loss)
                avg_loss.backward()
                opt.minimize(avg_loss)
                simple_net.clear_gradients()
                p.step(num_samples=step_num_samples)
                if i % 10 == 0:
                    step_info = p.step_info()
                    print("Iter {}: {}".format(i, step_info))
            p.stop()
            return step_info

        step_info = train(step_num_samples=None)
        self.assertTrue('steps/s' in step_info)
        step_info = train(step_num_samples=4)
        self.assertTrue('samples/s' in step_info)

    def test_without_dataloader(self):
        x = paddle.to_tensor(np.random.randn(10, 10))
        y = paddle.to_tensor(np.random.randn(10, 10))
        p = profiler.Profiler(timer_only=True)
        p.start()
        step_info = ''
        for i in range(20):
            out = x + y
            p.step()
        p.stop()


C
chenjian 已提交
210 211
if __name__ == '__main__':
    unittest.main()