test_activation_op.py 104.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
Q
qijun 已提交
16
import unittest
J
joejiong 已提交
17

Q
qijun 已提交
18
import numpy as np
C
Clementine 已提交
19
from scipy.special import expit, erf
J
joejiong 已提交
20

21
from paddle.fluid.tests.unittests.op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci
22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.functional as F
J
joejiong 已提交
25 26
import paddle.fluid as fluid
import paddle.fluid.core as core
27
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
28

29 30
paddle.enable_static()

Q
qijun 已提交
31

32
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
48
class TestActivation(OpTest):
Q
qijun 已提交
49 50
    def setUp(self):
        self.op_type = "exp"
51
        self.init_dtype()
52
        self.init_kernel_type()
53

54
        np.random.seed(2049)
55 56 57 58 59
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
60 61 62 63 64

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
65 66
        if self.dtype == np.float16:
            return
67
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
68

69
    def init_dtype(self):
70
        self.dtype = np.float64
71

72 73 74
    def init_kernel_type(self):
        pass

Q
qijun 已提交
75

R
ronnywang 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
class TestExpm1(TestActivation):
    def setUp(self):
        self.op_type = "expm1"
        self.init_dtype()

        np.random.seed(2049)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.expm1(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestExpm1API(unittest.TestCase):
    def init_dtype(self):
        self.dtype = 'float64'
        self.shape = [11, 17]

    def setUp(self):
        self.init_dtype()
        self.x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
        self.out_ref = np.expm1(self.x)

        self.place = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.place.append(paddle.CUDAPlace(0))

    def test_static_api(self):
        paddle.enable_static()

        def run(place):
            with paddle.static.program_guard(paddle.static.Program()):
                X = paddle.fluid.data('X', self.shape, dtype=self.dtype)
                out = paddle.expm1(X)
                exe = paddle.static.Executor(place)
                res = exe.run(feed={'X': self.x})
            for r in res:
                self.assertEqual(np.allclose(self.out_ref, r), True)

        for place in self.place:
            run(place)

    def test_dygraph_api(self):
        def run(place):
            paddle.disable_static(place)
            X = paddle.to_tensor(self.x)
            out = paddle.expm1(X)
            self.assertEqual(np.allclose(self.out_ref, out.numpy()), True)
            paddle.enable_static()

        for place in self.place:
            run(place)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            X = paddle.fluid.data('X', self.shape, dtype='int32')
            self.assertRaises(TypeError, paddle.expm1, X)
        # The input dtype must be float16, float32, float64.


140 141 142
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
143
            np_x = np.array([0.1])
144
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
145
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
146 147
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
148 149 150
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
151 152 153 154 155 156 157

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
158 159 160 161 162
            # ROCM platform will fail in assertEqual
            if core.is_compiled_with_rocm():
                self.assertTrue(np.allclose(z, z_expected))
            else:
                self.assertEqual(z, z_expected)
163 164


C
chengduo 已提交
165
class TestSigmoid(TestActivation):
Q
qijun 已提交
166 167
    def setUp(self):
        self.op_type = "sigmoid"
168 169
        self.init_dtype()

170
        np.random.seed(1024)
171 172 173 174 175
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
176

177 178 179
    def init_dtype(self):
        self.dtype = np.float32

180
    def test_check_grad(self):
181 182 183 184
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

185

M
minghaoBD 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
class TestSilu(TestActivation):
    def setUp(self):
        self.op_type = "silu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = x / (np.exp(-x) + 1)

        self.inputs = {'X': x}
        self.outputs = {'Out': out}

    def init_dtype(self):
        self.dtype = np.float32

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestSiluAPI(unittest.TestCase):
    # test paddle.nn.Silu, paddle.nn.functional.silu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [11, 17])
            out1 = F.silu(x)
            m = paddle.nn.Silu()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.silu(x)
        m = paddle.nn.Silu()
        out2 = m(x)
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.silu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
            self.assertRaises(TypeError, F.silu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
            F.silu(x_fp16)


C
chengduo 已提交
252
class TestLogSigmoid(TestActivation):
253 254
    def setUp(self):
        self.op_type = "logsigmoid"
255 256
        self.init_dtype()

257
        np.random.seed(2048)
258 259 260
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

261
        self.inputs = {'X': x}
262
        self.outputs = {'Out': out}
263 264

    def test_check_grad(self):
265 266
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
267
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
268 269


270
class TestLogSigmoidAPI(unittest.TestCase):
271
    # test paddle.nn.LogSigmoid, paddle.nn.functional.log_sigmoid
272
    def setUp(self):
273
        np.random.seed(1024)
274
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
275
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
276 277 278
            else paddle.CPUPlace()

    def test_static_api(self):
279
        paddle.enable_static()
280
        with paddle.static.program_guard(paddle.static.Program()):
281
            x = paddle.fluid.data('X', [11, 17])
282
            out1 = F.log_sigmoid(x)
283 284 285 286 287 288
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
289
            self.assertTrue(np.allclose(out_ref, r))
290 291 292 293

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
294
        out1 = F.log_sigmoid(x)
295 296 297 298
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
299
            self.assertTrue(np.allclose(out_ref, r.numpy()))
300 301
        paddle.enable_static()

302
    def test_fluid_api(self):
303
        paddle.enable_static()
304
        with paddle.static.program_guard(paddle.static.Program()):
305
            x = paddle.fluid.data('X', [11, 17])
306 307 308 309 310 311
            out = paddle.fluid.layers.logsigmoid(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        self.assertTrue(np.allclose(out_ref, res[0]))

312
    def test_errors(self):
313
        paddle.enable_static()
314 315
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
316
            self.assertRaises(TypeError, F.log_sigmoid, 1)
317
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
318 319
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
320
            self.assertRaises(TypeError, F.log_sigmoid, x_int32)
321
            # support the input dtype is float16
J
joejiong 已提交
322 323
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
324
            F.log_sigmoid(x_fp16)
325 326


327
class TestTanh(TestActivation, TestParameter):
328 329
    def setUp(self):
        self.op_type = "tanh"
330
        self.init_dtype()
331
        np.random.seed(1024)
332 333 334 335 336
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
337 338

    def test_check_grad(self):
339 340
        if self.dtype == np.float16:
            return
341
        self.check_grad(['X'], 'Out')
342

343 344 345 346 347 348
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

349

W
WangXi 已提交
350 351 352 353
class TestTanhAPI(unittest.TestCase):
    # test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
    def setUp(self):
        self.dtype = 'float32'
354
        np.random.seed(1024)
W
WangXi 已提交
355
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
J
joejiong 已提交
356
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
W
WangXi 已提交
357
            else paddle.CPUPlace()
358 359 360 361
        self.executed_api()

    def executed_api(self):
        self.tanh = F.tanh
W
WangXi 已提交
362 363

    def test_static_api(self):
364
        paddle.enable_static()
W
WangXi 已提交
365
        with paddle.static.program_guard(paddle.static.Program()):
366
            x = paddle.fluid.data('X', [10, 12], self.dtype)
367
            out1 = self.tanh(x)
W
WangXi 已提交
368 369 370 371 372 373 374 375 376 377
            th = paddle.nn.Tanh()
            out2 = th(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.tanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
378
        x = paddle.to_tensor(self.x_np)
W
WangXi 已提交
379 380 381 382 383 384 385 386 387 388
        out1 = F.tanh(x)
        out2 = paddle.tanh(x)
        th = paddle.nn.Tanh()
        out3 = th(x)
        out_ref = np.tanh(self.x_np)
        for r in [out1, out2, out3]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
389
        paddle.enable_static()
W
WangXi 已提交
390 391 392 393 394 395 396 397 398
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12], self.dtype)
            out = fluid.layers.tanh(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tanh(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
399
        paddle.enable_static()
W
WangXi 已提交
400 401
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
402
            self.assertRaises(TypeError, self.tanh, 1)
W
WangXi 已提交
403
            # The input dtype must be float16, float32.
J
joejiong 已提交
404 405
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
406
            self.assertRaises(TypeError, self.tanh, x_int32)
W
WangXi 已提交
407
            # support the input dtype is float16
J
joejiong 已提交
408 409
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
410 411 412 413 414 415 416
            self.tanh(x_fp16)


class TestTanhInplaceAPI(TestTanhAPI):
    # test paddle.tanh_
    def executed_api(self):
        self.tanh = paddle.tanh_
W
WangXi 已提交
417 418


419
class TestAtan(TestActivation, TestParameter):
420 421 422 423
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

424
        np.random.seed(1024)
425 426 427 428 429 430 431 432 433
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
434
        self.check_grad(['X'], 'Out')
435

W
WuHaobo 已提交
436 437 438 439 440 441 442 443 444 445 446
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

447 448 449 450 451 452 453 454
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

455

456 457 458 459 460
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

461
        np.random.seed(1024)
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

533
        np.random.seed(1024)
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


600 601 602 603 604 605
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
K
Kavya Srinet 已提交
606 607
    def setUp(self):
        self.op_type = "tanh_shrink"
608 609
        self.init_dtype()

610
        np.random.seed(1024)
611 612
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
613

614
        self.inputs = {'X': x}
615
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
616 617

    def test_check_grad(self):
618 619
        if self.dtype == np.float16:
            return
620
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
621

622

623 624 625
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
626
        np.random.seed(1024)
627
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
J
joejiong 已提交
628
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
629 630 631
            else paddle.CPUPlace()

    def test_static_api(self):
632
        paddle.enable_static()
633
        with paddle.static.program_guard(paddle.static.Program()):
634
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
656
        paddle.enable_static()
657 658 659 660 661 662 663 664 665
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
666
        paddle.enable_static()
667 668 669 670
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
671 672
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
673 674
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
675 676
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
677 678 679
            F.tanhshrink(x_fp16)


680 681 682 683 684 685
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
686
class TestHardShrink(TestActivation):
687 688
    def setUp(self):
        self.op_type = "hard_shrink"
689 690
        self.init_dtype()

691 692
        self.threshold = 0.5
        self.set_attrs()
693
        np.random.seed(1024)
Z
zhupengyang 已提交
694
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
695
        out = ref_hardshrink(x, self.threshold)
696

697
        self.attrs = {'threshold': self.threshold}
698
        self.inputs = {'X': x}
699
        self.outputs = {'Out': out}
700

701 702 703
    def set_attrs(self):
        pass

704
    def test_check_grad(self):
705 706
        if self.dtype == np.float16:
            return
707
        self.check_grad(['X'], 'Out')
708 709


710 711 712 713 714
class TestHardShrink_threshold_negative(TestHardShrink):
    def set_attrs(self):
        self.threshold = -0.1


715 716 717
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
718
        np.random.seed(1024)
719
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
720
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
721 722 723
            else paddle.CPUPlace()

    def test_static_api(self):
724
        paddle.enable_static()
725
        with paddle.static.program_guard(paddle.static.Program()):
726
            x = paddle.fluid.data('X', [10, 12])
727 728 729 730 731 732 733 734 735 736 737
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
738
        x = paddle.to_tensor(self.x_np)
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
755
        paddle.enable_static()
756 757 758 759 760 761 762 763
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

764
    def test_errors(self):
765
        paddle.enable_static()
766
        with paddle.static.program_guard(paddle.static.Program()):
767
            # The input type must be Variable.
768
            self.assertRaises(TypeError, F.hardshrink, 1)
769
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
770 771
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
772
            self.assertRaises(TypeError, F.hardshrink, x_int32)
773
            # support the input dtype is float16
J
joejiong 已提交
774 775
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
776
            F.hardshrink(x_fp16)
777 778


779 780 781 782 783 784 785 786 787 788 789
def ref_hardtanh(x, min=-1.0, max=1.0):
    out = np.copy(x)
    out[np.abs(x - min) < 0.005] = min + 0.02
    out[np.abs(x - max) < 0.005] = max + 0.02
    out = np.minimum(np.maximum(x, min), max)
    return out


class TestHardtanhAPI(unittest.TestCase):
    # test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
    def setUp(self):
790
        np.random.seed(1024)
791
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
792
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
793 794 795
            else paddle.CPUPlace()

    def test_static_api(self):
796
        paddle.enable_static()
797
        with paddle.static.program_guard(paddle.static.Program()):
798
            x = paddle.fluid.data('X', [10, 12])
799 800 801 802 803 804 805 806 807 808 809
            out1 = F.hardtanh(x)
            m = paddle.nn.Hardtanh()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardtanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
810
        x = paddle.to_tensor(self.x_np)
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
        out1 = F.hardtanh(x)
        m = paddle.nn.Hardtanh()
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardtanh(x, -2.0, 2.0)
        m = paddle.nn.Hardtanh(-2.0, 2.0)
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np, -2.0, 2.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
827
        paddle.enable_static()
828 829 830 831
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.hardtanh, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
832 833
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
834 835
            self.assertRaises(TypeError, F.hardtanh, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
836 837
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
838 839 840
            F.hardtanh(x_fp16)


841 842 843 844 845 846 847 848
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
849 850
    def setUp(self):
        self.op_type = "softshrink"
851 852
        self.init_dtype()

853
        threshold = 0.8
854

855
        np.random.seed(1023)
856 857 858 859
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
860
        self.outputs = {'Out': out}
861 862

    def test_check_grad(self):
863 864
        if self.dtype == np.float16:
            return
865
        self.check_grad(['X'], 'Out')
866

867

868 869 870 871
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
872
        np.random.seed(1024)
873
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
J
joejiong 已提交
874
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
875 876 877
            else paddle.CPUPlace()

    def test_static_api(self):
878
        paddle.enable_static()
879
        with paddle.static.program_guard(paddle.static.Program()):
880
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
902
        paddle.enable_static()
903 904 905 906 907 908 909 910
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

911
    def test_errors(self):
912
        paddle.enable_static()
913
        with paddle.static.program_guard(paddle.static.Program()):
914
            # The input type must be Variable.
915
            self.assertRaises(TypeError, F.softshrink, 1)
916
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
917 918
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
919
            self.assertRaises(TypeError, F.softshrink, x_int32)
920
            # The threshold must be no less than zero
J
joejiong 已提交
921 922
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[12, 10], dtype='float32')
923
            self.assertRaises(ValueError, F.softshrink, x_fp32, -1.0)
924
            # support the input dtype is float16
J
joejiong 已提交
925 926
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
927
            F.softshrink(x_fp16)
928 929


930
class TestSqrt(TestActivation, TestParameter):
931 932
    def setUp(self):
        self.op_type = "sqrt"
933 934
        self.init_dtype()

935
        np.random.seed(1023)
936 937 938 939 940
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
941 942

    def test_check_grad(self):
943 944
        if self.dtype == np.float16:
            return
945
        self.check_grad(['X'], 'Out')
946

947

Z
zhoukunsheng 已提交
948 949 950 951 952
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

953
        np.random.seed(1024)
Z
zhupengyang 已提交
954
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
955 956 957 958 959 960 961 962 963 964 965
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
966
class TestAbs(TestActivation):
967 968
    def setUp(self):
        self.op_type = "abs"
969 970
        self.init_dtype()

971
        np.random.seed(1024)
972
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
973
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
974
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
975
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
976 977
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
978 979 980 981
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
982 983

    def test_check_grad(self):
984 985
        if self.dtype == np.float16:
            return
986
        self.check_grad(['X'], 'Out')
987

988

C
chengduo 已提交
989
class TestCeil(TestActivation):
D
dzhwinter 已提交
990 991
    def setUp(self):
        self.op_type = "ceil"
992 993
        self.init_dtype()

994
        np.random.seed(1024)
Z
zhupengyang 已提交
995
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
996 997 998 999
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1000

D
dzhwinter 已提交
1001
    # The same reason with TestFloor
C
chengduo 已提交
1002
    def test_check_grad(self):
1003 1004 1005
        pass


C
chengduo 已提交
1006
class TestFloor(TestActivation):
D
dzhwinter 已提交
1007 1008
    def setUp(self):
        self.op_type = "floor"
1009 1010
        self.init_dtype()

1011
        np.random.seed(1024)
Z
zhupengyang 已提交
1012
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1013 1014 1015 1016
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1017

D
dzhwinter 已提交
1018
    # the gradient on floor, ceil, round is undefined.
1019
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
1020 1021
    # The same reason with TestFloor
    def test_check_grad(self):
1022 1023 1024
        pass


C
chengduo 已提交
1025
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
1026 1027
    def setUp(self):
        self.op_type = "cos"
1028 1029
        self.init_dtype()

1030
        np.random.seed(1024)
Z
zhupengyang 已提交
1031
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1032 1033 1034 1035
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
1036 1037

    def test_check_grad(self):
1038 1039
        if self.dtype == np.float16:
            return
1040
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
1041

1042

J
joejiong 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
class TestTan(TestActivation):
    def setUp(self):
        np.random.seed(1024)
        self.op_type = "tan"
        self.init_dtype()
        self.dtype = 'float32'
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

        out = np.tan(self.x_np)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x_np)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out_test = paddle.tan(x)
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, out_test.numpy()))
        paddle.enable_static()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12], self.dtype)
            out = paddle.tan(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = paddle.to_tensor(input_x)
            var.stop_gradient = False
            loss = paddle.tan(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


1094 1095 1096 1097 1098
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

1099
        np.random.seed(1024)
Z
zhupengyang 已提交
1100
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1101 1102 1103 1104 1105 1106 1107 1108
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1109
        self.check_grad(['X'], 'Out')
1110 1111


1112
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
1113 1114
    def setUp(self):
        self.op_type = "sin"
1115 1116
        self.init_dtype()

1117
        np.random.seed(1024)
Z
zhupengyang 已提交
1118
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1119 1120 1121 1122
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
1123 1124

    def test_check_grad(self):
1125 1126
        if self.dtype == np.float16:
            return
1127
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
1128 1129


1130 1131 1132 1133 1134
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

1135
        np.random.seed(2048)
Z
zhupengyang 已提交
1136
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1137 1138 1139 1140 1141 1142 1143 1144
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1145
        self.check_grad(['X'], 'Out')
1146 1147


X
xiaoting 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
class TestAcosh(TestActivation):
    def setUp(self):
        self.op_type = "acosh"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(2, 3, [10, 12]).astype(self.dtype)
        out = np.arccosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestAsinh(TestActivation):
    def setUp(self):
        self.op_type = "asinh"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(1, 2, [10, 12]).astype(self.dtype)
        out = np.arcsinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestAtanh(TestActivation):
    def setUp(self):
        self.op_type = "atanh"
        self.init_dtype()

        np.random.seed(400)
        x = np.random.uniform(-0.9, 0.9, [10, 12]).astype(self.dtype)
        out = np.arctanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


C
chengduo 已提交
1202
class TestRound(TestActivation):
D
dzhwinter 已提交
1203 1204
    def setUp(self):
        self.op_type = "round"
1205 1206
        self.init_dtype()

1207
        np.random.seed(1024)
Z
zhupengyang 已提交
1208
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1209 1210 1211 1212
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1213

C
chengduo 已提交
1214
    def test_check_grad(self):
1215 1216 1217
        pass


C
chengduo 已提交
1218
class TestRelu(TestActivation):
1219
    def setUp(self):
Q
qijun 已提交
1220
        self.op_type = "relu"
K
Kexin Zhao 已提交
1221 1222
        self.init_dtype()

1223
        np.random.seed(1024)
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
        if self.dtype == np.uint16:
            x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = convert_float_to_uint16(np.maximum(x, 0))
            self.inputs = {'X': convert_float_to_uint16(x)}
        else:
            x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = np.maximum(x, 0)
            self.inputs = {'X': x}
K
Kexin Zhao 已提交
1236 1237

        self.outputs = {'Out': out}
1238 1239

    def test_check_grad(self):
K
Kexin Zhao 已提交
1240 1241
        if self.dtype == np.float16:
            return
1242
        self.check_grad(['X'], 'Out')
A
Adam 已提交
1243 1244


1245 1246 1247
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
1248
        np.random.seed(1024)
1249
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1250
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1251
            else paddle.CPUPlace()
1252 1253 1254 1255
        self.executed_api()

    def executed_api(self):
        self.relu = F.relu
1256 1257

    def test_static_api(self):
1258
        paddle.enable_static()
1259
        with paddle.static.program_guard(paddle.static.Program()):
1260
            x = paddle.fluid.data('X', [10, 12])
1261
            out1 = self.relu(x)
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.ReLU()
1274 1275
        out1 = m(x)
        out2 = self.relu(x)
1276 1277 1278 1279 1280
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1281
    def test_errors(self):
1282
        paddle.enable_static()
1283
        with paddle.static.program_guard(paddle.static.Program()):
1284
            # The input type must be Variable.
1285
            self.assertRaises(TypeError, self.relu, 1)
1286
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1287 1288
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1289
            self.assertRaises(TypeError, self.relu, x_int32)
1290
            # support the input dtype is float16
J
joejiong 已提交
1291 1292
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1293 1294 1295 1296 1297 1298 1299
            self.relu(x_fp16)


class TestReluInplaceAPI(TestReluAPI):
    # test paddle.nn.functional.relu_
    def executed_api(self):
        self.relu = F.relu_
1300 1301


1302 1303 1304 1305 1306 1307
def ref_leaky_relu(x, alpha=0.01):
    out = np.copy(x)
    out[out < 0] *= alpha
    return out


A
Adam 已提交
1308
class TestLeakyRelu(TestActivation):
1309 1310 1311
    def get_alpha(self):
        return 0.02

A
Adam 已提交
1312 1313 1314
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()
1315
        alpha = self.get_alpha()
A
Adam 已提交
1316

1317
        np.random.seed(1024)
A
Adam 已提交
1318 1319
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
1320 1321
        x[np.abs(x) < 0.005] = 0.05
        out = ref_leaky_relu(x, alpha)
A
Adam 已提交
1322

1323
        self.inputs = {'X': x}
A
Adam 已提交
1324
        self.outputs = {'Out': out}
1325
        self.attrs = {'alpha': alpha}
A
Adam 已提交
1326 1327 1328 1329

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1330
        self.check_grad(['X'], 'Out')
1331 1332


1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
class TestLeakyReluAlpha1(TestLeakyRelu):
    def get_alpha(self):
        return 2


class TestLeakyReluAlpha2(TestLeakyRelu):
    def get_alpha(self):
        return -0.01


class TestLeakyReluAlpha3(TestLeakyRelu):
    def get_alpha(self):
        return -2.0


class TestLeakyReluAPI(unittest.TestCase):
    # test paddle.nn.LeakyReLU, paddle.nn.functional.leaky_relu,
    # fluid.layers.leaky_relu
    def setUp(self):
1352
        np.random.seed(1024)
1353
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1354
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1355 1356 1357
            else paddle.CPUPlace()

    def test_static_api(self):
1358
        paddle.enable_static()
1359
        with paddle.static.program_guard(paddle.static.Program()):
1360
            x = paddle.fluid.data('X', [10, 12])
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
            out1 = F.leaky_relu(x)
            m = paddle.nn.LeakyReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_leaky_relu(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
1372
        x = paddle.to_tensor(self.x_np)
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
        out1 = F.leaky_relu(x)
        m = paddle.nn.LeakyReLU()
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.leaky_relu(x, 0.6)
        m = paddle.nn.LeakyReLU(0.6)
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1389
        paddle.enable_static()
1390 1391 1392 1393 1394 1395 1396 1397
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.leaky_relu(x, 0.01)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_leaky_relu(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1398
    def test_errors(self):
1399
        paddle.enable_static()
1400
        with paddle.static.program_guard(paddle.static.Program()):
1401
            # The input type must be Variable.
1402
            self.assertRaises(TypeError, F.leaky_relu, 1)
1403
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1404 1405
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1406 1407
            self.assertRaises(TypeError, F.leaky_relu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1408 1409
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1410
            F.leaky_relu(x_fp16)
1411 1412


1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
1423 1424 1425
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
1426
        approximate = True
1427
        np.random.seed(1024)
1428 1429
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
1430

1431
        self.inputs = {'X': x}
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
1446
        np.random.seed(2048)
C
Clementine 已提交
1447
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1448
        out = gelu(x, approximate)
C
Clementine 已提交
1449

1450
        self.inputs = {'X': x}
C
Clementine 已提交
1451
        self.outputs = {'Out': out}
1452
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
1453 1454 1455 1456

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1457
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
1458 1459


1460 1461 1462
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
1463
        np.random.seed(1024)
1464
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
1465
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1466 1467 1468
            else paddle.CPUPlace()

    def test_static_api(self):
1469
        paddle.enable_static()
1470
        with paddle.static.program_guard(paddle.static.Program()):
1471
            x = paddle.fluid.data('X', [11, 17])
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
1500
        paddle.enable_static()
1501 1502 1503 1504
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1505 1506
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
1507 1508
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1509 1510
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
1511 1512 1513
            F.gelu(x_fp16)


C
chengduo 已提交
1514
class TestBRelu(TestActivation):
1515 1516
    def setUp(self):
        self.op_type = "brelu"
1517 1518
        self.init_dtype()

1519
        np.random.seed(1024)
Z
zhupengyang 已提交
1520
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1521 1522
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
1523 1524
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
1525
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
1526 1527 1528
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
1529 1530 1531

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
1532
        self.outputs = {'Out': t}
1533 1534

    def test_check_grad(self):
1535 1536
        if self.dtype == np.float16:
            return
1537
        self.check_grad(['X'], 'Out')
1538

1539

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
class TestBreluAPI(unittest.TestCase):
    # test paddle.fluid.layers.brelu
    def setUp(self):
        np.random.seed(1024)
        self.t_min = 0.
        self.t_max = 24.
        self.x_np = np.random.uniform(-1, 30, [10, 12]).astype('float32')
        self.out_ref = np.copy(self.x_np)
        self.out_ref[self.out_ref < self.t_min] = self.t_min
        self.out_ref[self.out_ref > self.t_max] = self.t_max
        self.out_ref = self.out_ref.astype('float32')
J
joejiong 已提交
1551
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
            else paddle.CPUPlace()

    def test_fluid_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12])
            out = paddle.fluid.layers.brelu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
            self.assertTrue(np.allclose(self.out_ref, res[0]))

            paddle.disable_static(self.place)
            x = paddle.to_tensor(self.x_np)
            out = paddle.fluid.layers.brelu(x)
            self.assertTrue(np.allclose(self.out_ref, out.numpy()))
            paddle.enable_static()

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


1581 1582 1583 1584 1585 1586 1587
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1588
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
1589
    def setUp(self):
1590
        self.op_type = "relu6"
1591 1592
        self.init_dtype()

1593
        np.random.seed(1024)
Z
zhupengyang 已提交
1594
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1595
        x[np.abs(x) < 0.005] = 0.02
1596
        out = ref_relu6(x)
1597

1598 1599
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1600
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1601

1602 1603 1604
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1605
        self.check_grad(['X'], 'Out')
1606 1607


1608 1609 1610
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
1611
        np.random.seed(1024)
1612 1613
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
1614
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1615 1616 1617
            else paddle.CPUPlace()

    def test_static_api(self):
1618
        paddle.enable_static()
1619
        with paddle.static.program_guard(paddle.static.Program()):
1620
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1642
        paddle.enable_static()
1643 1644 1645 1646 1647 1648 1649 1650
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1651
    def test_errors(self):
1652
        paddle.enable_static()
1653
        with paddle.static.program_guard(paddle.static.Program()):
1654
            # The input type must be Variable.
1655
            self.assertRaises(TypeError, F.relu6, 1)
1656
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1657 1658
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1659
            self.assertRaises(TypeError, F.relu6, x_int32)
1660
            # support the input dtype is float16
J
joejiong 已提交
1661 1662
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1663
            F.relu6(x_fp16)
1664 1665


1666 1667 1668 1669 1670
def ref_hardswish(x, threshold=6.0, scale=6.0, offset=3.0):
    return (x * np.minimum(np.maximum(x + offset, 0.), threshold) /
            scale).astype(x.dtype)


H
huangjun12 已提交
1671 1672 1673 1674 1675
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

J
jakpiase 已提交
1676 1677
        skip_check_grad_ci(reason="not implemented yet")

1678
        np.random.seed(1024)
Z
zhupengyang 已提交
1679
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1680 1681 1682 1683 1684 1685
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
1686
        out = ref_hardswish(x, threshold, scale, offset)
H
huangjun12 已提交
1687

1688
        self.inputs = {'X': x}
H
huangjun12 已提交
1689 1690 1691 1692 1693 1694
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
J
jakpiase 已提交
1695 1696

        return  # not implemented yet
1697
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
1698 1699


1700 1701 1702 1703
class TestHardswishAPI(unittest.TestCase):
    # test paddle.nn.Hardswish, paddle.nn.functional.hardswish
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
1704
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1705 1706 1707 1708
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
1709
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
            out1 = F.hardswish(x)
            m = paddle.nn.Hardswish()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardswish(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardswish(x)
        m = paddle.nn.Hardswish()
        out2 = m(x)
        out_ref = ref_hardswish(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
1728
        paddle.enable_static()
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardswish(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_swish(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
1747
            # The input type must be Variable.
1748
            self.assertRaises(TypeError, F.hardswish, 1)
1749
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1750 1751
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1752
            self.assertRaises(TypeError, F.hardswish, x_int32)
1753
            # support the input dtype is float16
J
joejiong 已提交
1754 1755
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1756
            F.hardswish(x_fp16)
1757 1758


C
chengduo 已提交
1759
class TestSoftRelu(TestActivation):
1760 1761
    def setUp(self):
        self.op_type = "soft_relu"
1762 1763
        self.init_dtype()

1764
        np.random.seed(4096)
1765
        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1766
        threshold = 2.0
Q
qijun 已提交
1767 1768
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1769
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1770 1771 1772
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1773 1774 1775 1776 1777
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1778 1779

    def test_check_grad(self):
1780 1781
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1782
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1783

1784

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1798
def elu(x, alpha):
Z
zhupengyang 已提交
1799
    out_ref = np.where(x > 0, x, alpha * (np.exp(x) - 1))
1800 1801 1802
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1803
class TestELU(TestActivation):
1804 1805
    def setUp(self):
        self.op_type = "elu"
1806 1807
        self.init_dtype()

1808
        np.random.seed(1024)
Z
zhupengyang 已提交
1809
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
Z
zhupengyang 已提交
1810
        alpha = self.get_alpha()
1811
        out = elu(x, alpha)
1812 1813 1814 1815
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1816
        self.outputs = {'Out': out}
1817 1818

    def test_check_grad(self):
1819 1820
        if self.dtype == np.float16:
            return
1821
        self.check_grad(['X'], 'Out')
1822

Z
zhupengyang 已提交
1823 1824 1825 1826 1827 1828 1829 1830
    def get_alpha(self):
        return 1.


class TestELUAlpha(TestELU):
    def get_alpha(self):
        return -0.2

1831

1832 1833 1834
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
1835
        np.random.seed(1024)
1836
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
1837
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1838
            else paddle.CPUPlace()
1839 1840 1841 1842
        self.executed_api()

    def executed_api(self):
        self.elu = F.elu
1843 1844

    def test_static_api(self):
1845
        paddle.enable_static()
1846
        with paddle.static.program_guard(paddle.static.Program()):
1847
            x = paddle.fluid.data('X', [10, 12])
1848
            out1 = self.elu(x)
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
1860 1861
        out1 = self.elu(x)
        x = paddle.to_tensor(self.x_np)
1862 1863 1864 1865 1866 1867
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

1868 1869
        out1 = self.elu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
1870 1871 1872 1873 1874 1875 1876
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1877
    def test_errors(self):
1878
        paddle.enable_static()
1879 1880
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
1881
            self.assertRaises(TypeError, self.elu, 1)
1882
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1883 1884
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1885
            self.assertRaises(TypeError, self.elu, x_int32)
1886
            # support the input dtype is float16
J
joejiong 已提交
1887 1888
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1889 1890 1891
            self.elu(x_fp16)


Z
zhupengyang 已提交
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
class TestELUInplaceAPI(TestELUAPI):
    # test paddle.nn.functional.elu_
    def executed_api(self):
        self.elu = F.elu_

    def test_alpha_error(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        self.assertRaises(Exception, F.elu_, x, -0.2)
        paddle.enable_static()


1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
def celu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x / alpha) - 1))
    return out_ref.astype(x.dtype)


class TestCELU(TestActivation):
    def setUp(self):
        self.op_type = "celu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
        alpha = 1.5
        out = celu(x, alpha)
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestCELUAPI(unittest.TestCase):
    # test paddle.nn.CELU, paddle.nn.functional.celu
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()
        self.executed_api()

    def executed_api(self):
        self.celu = F.celu

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out1 = self.celu(x, 1.5)
            m = paddle.nn.CELU(1.5)
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = celu(self.x_np, 1.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = self.celu(x, 1.5)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(1.5)
        out2 = m(x)
        out_ref = celu(self.x_np, 1.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = self.celu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(0.2)
        out2 = m(x)
        out_ref = celu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, self.celu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
            self.assertRaises(TypeError, self.celu, x_int32)
            # The alpha must be not equal 0
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[10, 12], dtype='float32')
            self.assertRaises(ZeroDivisionError, F.celu, x_fp32, 0)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
            self.celu(x_fp16)


C
chengduo 已提交
1992
class TestReciprocal(TestActivation):
Q
qijun 已提交
1993 1994
    def setUp(self):
        self.op_type = "reciprocal"
1995 1996
        self.init_dtype()

1997
        np.random.seed(1024)
1998 1999 2000 2001 2002
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2003 2004

    def test_check_grad(self):
2005 2006
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
2007
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
2008 2009


C
chengduo 已提交
2010
class TestLog(TestActivation):
Q
qijun 已提交
2011 2012
    def setUp(self):
        self.op_type = "log"
2013 2014
        self.init_dtype()

2015
        np.random.seed(1024)
2016 2017 2018 2019 2020
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2021 2022

    def test_check_grad(self):
2023 2024
        if self.dtype == np.float16:
            return
2025
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
2026

2027 2028 2029 2030 2031 2032 2033 2034 2035
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

2036

J
joejiong 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
class TestLog2(TestActivation):
    def setUp(self):
        self.op_type = "log2"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log2(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log2, in1)
        self.assertRaises(TypeError, paddle.log2, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log2(data_x)
            exe = paddle.static.Executor(place=fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log2(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log2(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log2(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


J
joejiong 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
class TestLog10(TestActivation):
    def setUp(self):
        self.op_type = "log10"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log10(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log10, in1)
        self.assertRaises(TypeError, paddle.log10, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log10(data_x)
            exe = paddle.static.Executor(place=paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log10(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log10(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log10(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


2135 2136 2137 2138 2139
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
        self.init_dtype()

2140
        np.random.seed(1024)
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
2164 2165 2166
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
2167
        expected_res = np.log1p(input_x)
2168
        self.assertTrue(np.allclose(res1, expected_res))
2169 2170 2171 2172 2173 2174 2175 2176

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
2177
        self.assertTrue(np.allclose(np_z, z_expected))
2178 2179


C
chengduo 已提交
2180
class TestSquare(TestActivation):
Q
qijun 已提交
2181 2182
    def setUp(self):
        self.op_type = "square"
2183 2184
        self.init_dtype()

2185
        np.random.seed(1024)
2186 2187 2188 2189 2190
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2191 2192

    def test_check_grad(self):
2193 2194
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
2195
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
2196

2197

C
chengduo 已提交
2198
class TestPow(TestActivation):
2199 2200
    def setUp(self):
        self.op_type = "pow"
2201 2202
        self.init_dtype()

2203
        np.random.seed(1024)
2204 2205 2206 2207
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
2208
        self.attrs = {'factor': 3.0}
2209
        self.outputs = {'Out': out}
2210 2211

    def test_check_grad(self):
2212 2213
        if self.dtype == np.float16:
            return
2214
        self.check_grad(['X'], 'Out')
2215

2216

2217 2218 2219 2220 2221
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
        self.init_dtype()

2222
        np.random.seed(1024)
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2240
        self.check_grad(['X'], 'Out')
2241 2242 2243 2244 2245

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
2246 2247 2248 2249 2250
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
2251 2252 2253 2254 2255

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
2256 2257 2258
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
2259 2260

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
2261
        res_1, res_2, res, res_6 = exe.run(
2262 2263
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
2264
            fetch_list=[out_1, out_2, res, out_6])
2265

2266 2267 2268
        assert np.allclose(res_1, np.power(input, 2))
        assert np.allclose(res_2, np.power(input, 3))
        assert np.allclose(res_6, np.power(input, 3))
2269

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

2293

2294 2295 2296 2297 2298
def ref_stanh(x, scale_a=0.67, scale_b=1.7159):
    out = scale_b * np.tanh(x * scale_a)
    return out


C
chengduo 已提交
2299
class TestSTanh(TestActivation):
2300 2301 2302 2303 2304 2305
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

2306 2307
    def setUp(self):
        self.op_type = "stanh"
2308
        self.init_dtype()
2309 2310
        scale_a = self.get_scale_a()
        scale_b = self.get_scale_b()
2311

2312
        np.random.seed(1024)
2313
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
2314 2315
        # The same reason with TestAbs
        out = ref_stanh(x, scale_a, scale_b)
2316

2317
        self.inputs = {'X': x}
2318
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
2319
        self.outputs = {'Out': out}
2320

Q
qijun 已提交
2321
    def test_check_grad(self):
2322 2323
        if self.dtype == np.float16:
            return
2324
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
2325

2326

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
class TestSTanhScaleA(TestSTanh):
    def get_scale_a(self):
        return 2.0


class TestSTanhScaleB(TestSTanh):
    def get_scale_b(self):
        return 0.5


class TestSTanhAPI(unittest.TestCase):
    # test paddle.nn.stanh
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.scale_a = self.get_scale_a()
        self.scale_b = self.get_scale_b()
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out = paddle.stanh(x, self.scale_a, self.scale_b)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.stanh(x, self.scale_a, self.scale_b)
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in [out]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.stanh(x, self.scale_a, self.scale_b)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2383
    def test_errors(self):
2384 2385
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2386
            # The input type must be Variable.
2387
            self.assertRaises(TypeError, paddle.stanh, 1)
2388
            # The input dtype must be float16, float32, float64.
2389 2390 2391
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, paddle.stanh, x_int32)
2392
            # support the input dtype is float16
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            paddle.stanh(x_fp16)


class TestSTanhAPIScaleA(TestSTanhAPI):
    def get_scale_a(self):
        return 2.0


class TestSTanhAPIScaleB(TestSTanhAPI):
    def get_scale_b(self):
        return 0.5
2406 2407


2408 2409 2410 2411 2412 2413 2414
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
2415
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
2416 2417
    def setUp(self):
        self.op_type = "softplus"
2418 2419
        self.init_dtype()

2420 2421
        beta = 2
        threshold = 15
2422

2423
        np.random.seed(1024)
2424 2425 2426 2427
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
2428
        self.outputs = {'Out': out}
K
kexinzhao 已提交
2429 2430

    def test_check_grad(self):
2431 2432
        if self.dtype == np.float16:
            return
2433
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
2434

2435

2436 2437 2438 2439 2440
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
2441
        np.random.seed(1024)
2442
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2443
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2444 2445 2446
            else paddle.CPUPlace()

    def test_static_api(self):
2447
        paddle.enable_static()
2448
        with paddle.static.program_guard(paddle.static.Program()):
2449
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2471
        paddle.enable_static()
2472 2473 2474 2475 2476 2477 2478 2479 2480
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2481
        paddle.enable_static()
2482 2483 2484 2485
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2486 2487
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2488 2489
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2490 2491
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2492 2493 2494 2495 2496 2497 2498 2499
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
2500
class TestSoftsign(TestActivation):
2501 2502
    def setUp(self):
        self.op_type = "softsign"
2503 2504
        self.init_dtype()

2505
        np.random.seed(1024)
2506 2507 2508
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
2509
        self.outputs = {'Out': out}
2510 2511

    def test_check_grad(self):
2512 2513
        if self.dtype == np.float16:
            return
2514
        self.check_grad(['X'], 'Out')
2515 2516


2517 2518 2519
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
2520
        np.random.seed(1024)
2521
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2522
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2523 2524 2525
            else paddle.CPUPlace()

    def test_static_api(self):
2526
        paddle.enable_static()
2527
        with paddle.static.program_guard(paddle.static.Program()):
2528
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2550
        paddle.enable_static()
2551 2552 2553 2554 2555 2556 2557 2558 2559
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2560
        paddle.enable_static()
2561 2562 2563 2564
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2565 2566
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2567 2568
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2569 2570
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2571 2572 2573
            F.softsign(x_fp16)


2574 2575 2576 2577 2578
def ref_thresholded_relu(x, threshold=1.0):
    out = (x > threshold) * x
    return out


C
chengduo 已提交
2579
class TestThresholdedRelu(TestActivation):
2580 2581
    def setUp(self):
        self.op_type = "thresholded_relu"
2582 2583
        self.init_dtype()

2584
        threshold = 15
2585

2586 2587 2588 2589 2590 2591
        np.random.seed(1024)
        x = np.random.uniform(-20, 20, [10, 12]).astype(self.dtype)
        x[np.abs(x) < 0.005] = 0.02
        out = ref_thresholded_relu(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"threshold": threshold}
2592
        self.outputs = {'Out': out}
2593 2594

    def test_check_grad(self):
2595 2596
        if self.dtype == np.float16:
            return
2597
        self.check_grad(['X'], 'Out')
2598 2599


2600 2601 2602 2603 2604 2605 2606
class TestThresholdedReluAPI(unittest.TestCase):
    # test paddle.nn.ThresholdedReLU, paddle.nn.functional.thresholded_relu
    def setUp(self):
        self.threshold = 15
        np.random.seed(1024)
        self.x_np = np.random.uniform(-20, 20, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
2607
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2608 2609 2610 2611 2612
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2613
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
            out1 = F.thresholded_relu(x, self.threshold)
            thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
            out2 = thresholded_relu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.thresholded_relu(x, self.threshold)
        thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
        out2 = thresholded_relu(x)
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.thresholded_relu(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2644
    def test_errors(self):
2645 2646
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2647
            # The input type must be Variable.
2648
            self.assertRaises(TypeError, F.thresholded_relu, 1)
2649
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2650 2651
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2652
            self.assertRaises(TypeError, F.thresholded_relu, x_int32)
2653
            # support the input dtype is float16
J
joejiong 已提交
2654 2655
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2656
            F.thresholded_relu(x_fp16)
2657 2658


2659 2660 2661 2662
def ref_hardsigmoid(x, slope=0.166666666666667, offset=0.5):
    return np.maximum(np.minimum(x * slope + offset, 1.), 0.).astype(x.dtype)


C
chengduo 已提交
2663
class TestHardSigmoid(TestActivation):
2664 2665
    def setUp(self):
        self.op_type = "hard_sigmoid"
2666 2667 2668 2669
        self.dtype = 'float64'
        self.slope = 0.166666666666667
        self.offset = 0.5
        self.set_attrs()
2670

2671 2672 2673
        x = np.random.uniform(-5, 5, [10, 12]).astype(self.dtype)
        lower_threshold = -self.offset / self.slope
        upper_threshold = (1. - self.offset) / self.slope
Z
zhupengyang 已提交
2674

2675
        # Same reason as TestAbs
2676 2677 2678
        delta = 0.005
        x[np.abs(x - lower_threshold) < delta] = lower_threshold - 0.02
        x[np.abs(x - upper_threshold) < delta] = upper_threshold - 0.02
2679

2680
        out = ref_hardsigmoid(x, self.slope, self.offset)
2681

2682 2683
        self.attrs = {'slope': self.slope, 'offset': self.offset}
        self.inputs = {'X': x}
2684
        self.outputs = {'Out': out}
2685

2686 2687
    def set_attrs(self):
        pass
2688

2689

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
class TestHardSigmoidFP32(TestHardSigmoid):
    def set_attrs(self):
        self.dtype = 'float32'


class TestHardSigmoidSlopeOffset(TestHardSigmoid):
    def set_attrs(self):
        self.slope = 0.2
        self.offset = 0.4


class TestHardsigmoidAPI(unittest.TestCase):
    # test paddle.nn.Hardsigmoid, paddle.nn.functional.hardsigmoid
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2705
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2706 2707 2708 2709
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2710
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
            out1 = F.hardsigmoid(x)
            m = paddle.nn.Hardsigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardsigmoid(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardsigmoid(x)
        m = paddle.nn.Hardsigmoid()
        out2 = m(x)
        out_ref = ref_hardsigmoid(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
2729
        paddle.enable_static()
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_sigmoid(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardsigmoid(self.x_np, 0.2, 0.5)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_sigmoid(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
2748
            # The input type must be Variable.
2749
            self.assertRaises(TypeError, F.hardsigmoid, 1)
2750
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2751 2752
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2753
            self.assertRaises(TypeError, F.hardsigmoid, x_int32)
2754
            # support the input dtype is float16
J
joejiong 已提交
2755 2756
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2757
            F.hardsigmoid(x_fp16)
2758 2759


2760 2761 2762 2763 2764
def ref_swish(x):
    out = x * expit(x)
    return out


C
chengduo 已提交
2765
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
2766 2767
    def setUp(self):
        self.op_type = "swish"
2768 2769
        self.init_dtype()

2770
        np.random.seed(1024)
2771 2772 2773
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_swish(x)
        self.inputs = {'X': x}
H
hong19860320 已提交
2774
        self.attrs = {'beta': 1.0}
2775
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
2776 2777

    def test_check_grad(self):
2778 2779
        if self.dtype == np.float16:
            return
2780 2781
        self.check_grad(['X'], 'Out')

A
Abhinav Arora 已提交
2782

2783 2784 2785 2786 2787
class TestSwishAPI(unittest.TestCase):
    # test paddle.nn.Swish, paddle.nn.functional.swish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2788
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2789 2790 2791 2792 2793
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2794
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
            out1 = F.swish(x)
            swish = paddle.nn.Swish()
            out2 = swish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_swish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.swish(x)
        swish = paddle.nn.Swish()
        out2 = swish(x)
        out_ref = ref_swish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_swish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)
2824

2825
    def test_errors(self):
2826 2827
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2828
            # The input type must be Variable.
2829
            self.assertRaises(TypeError, F.swish, 1)
2830
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2831 2832
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2833
            self.assertRaises(TypeError, F.swish, x_int32)
2834
            # support the input dtype is float16
J
joejiong 已提交
2835 2836
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2837
            F.swish(x_fp16)
2838 2839


2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
def ref_mish(x, threshold=20.):
    softplus = np.select([x <= threshold, x > threshold],
                         [np.log(1 + np.exp(x)), x])
    return x * np.tanh(softplus)


class TestMish(TestActivation):
    def setUp(self):
        self.op_type = "mish"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_mish(x)
        self.inputs = {'X': x}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestMishAPI(unittest.TestCase):
    # test paddle.nn.Mish, paddle.nn.functional.mish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.mish(x)
            mish = paddle.nn.Mish()
            out2 = mish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_mish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.mish(x)
        mish = paddle.nn.Mish()
        out2 = mish(x)
        out_ref = ref_mish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.mish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_mish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.mish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.mish, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            F.mish(x_fp16)


2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')
J
joejiong 已提交
2951
create_test_error_class('tan')
X
xiaoting 已提交
2952 2953 2954
create_test_error_class('acosh')
create_test_error_class('asinh')
create_test_error_class('atanh')
2955 2956


2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
2976 2977 2978 2979 2980
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
J
joejiong 已提交
2981
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
C
chengduo 已提交
2982 2983 2984 2985
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
2986

C
chengduo 已提交
2987
        def test_check_output(self):
2988
            place = core.CUDAPlace(0)
C
chengduo 已提交
2989 2990 2991
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
2992

C
chengduo 已提交
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
R
ronnywang 已提交
3006
create_test_act_fp16_class(TestExpm1)
C
chengduo 已提交
3007
create_test_act_fp16_class(TestSigmoid)
M
minghaoBD 已提交
3008
create_test_act_fp16_class(TestSilu)
C
chengduo 已提交
3009 3010
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
3011
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
3012
create_test_act_fp16_class(TestHardShrink)
3013
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
3014 3015 3016 3017 3018
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
J
joejiong 已提交
3019
create_test_act_fp16_class(TestTan, grad_atol=0.85)
3020
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
3021
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
3022
create_test_act_fp16_class(TestSin)
3023
create_test_act_fp16_class(TestSinh)
3024 3025
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
X
xiaoting 已提交
3026 3027 3028
create_test_act_fp16_class(TestAcosh, grad_atol=0.85)
create_test_act_fp16_class(TestAsinh, grad_atol=0.85)
create_test_act_fp16_class(TestAtanh, grad_atol=0.85)
C
chengduo 已提交
3029 3030
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
3031
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
3032 3033
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
3034
create_test_act_fp16_class(TestSoftRelu, grad_atol=0.85)
C
chengduo 已提交
3035
create_test_act_fp16_class(TestELU)
3036
create_test_act_fp16_class(TestCELU)
C
chengduo 已提交
3037 3038
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
3039 3040 3041 3042
if core.is_compiled_with_rocm():
    create_test_act_fp16_class(TestLog2, atol=5e-2, grad_atol=0.85)
else:
    create_test_act_fp16_class(TestLog2, atol=5e-2)
J
joejiong 已提交
3043
create_test_act_fp16_class(TestLog10, atol=5e-2)
3044
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
3045 3046
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
3047
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
3048 3049 3050 3051 3052
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
3053
create_test_act_fp16_class(TestSwish, grad_atol=0.85)
H
huangjun12 已提交
3054
create_test_act_fp16_class(TestHardSwish)
3055
create_test_act_fp16_class(TestMish, grad_atol=0.9)
A
Abhinav Arora 已提交
3056

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083

def create_test_act_bf16_class(parent,
                               atol=1e-2,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActBF16(parent):
        def init_dtype(self):
            self.dtype = np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=atol)

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "bf16")
    TestActBF16.__name__ = cls_name
    globals()[cls_name] = TestActBF16


create_test_act_bf16_class(TestRelu)

Q
qijun 已提交
3084 3085
if __name__ == "__main__":
    unittest.main()