hierarchical-rnn.rst 10.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#################
双层RNN配置与示例
#################

我们在 :code:`paddle/gserver/tests/test_RecurrentGradientMachine` 单测中,通过多组语义相同的单双层RNN配置,讲解如何使用双层RNN。

示例1:双进双出,subseq间无memory
=================================

配置:单层RNN(:code:`sequence_layer_group`)和双层RNN(:code:`sequence_nest_layer_group`),语义完全相同。

读取双层序列的方法
------------------

首先,我们看一下单双层序列的不同数据组织形式(您也可以采用别的组织形式)\:

- 单层序列的数据( :code:`Sequence/tour_train_wdseg`)如下,一共有10个样本。每个样本由两部分组成,一个label(此处都为2)和一个已经分词后的句子。

Y
Yu Yang 已提交
19 20
..  literalinclude:: ../../../paddle/gserver/tests/Sequence/tour_train_wdseg
    :language: text
Y
Yu Yang 已提交
21 22 23 24


- 双层序列的数据( :code:`Sequence/tour_train_wdseg.nest`)如下,一共有4个样本。样本间用空行分开,代表不同的双层序列,序列数据和上面的完全一样。每个样本的子句数分别为2,3,2,3。

Y
Yu Yang 已提交
25 26
..  literalinclude:: ../../../paddle/gserver/tests/Sequence/tour_train_wdseg.nest
    :language: text
Y
Yu Yang 已提交
27 28 29 30 31 32 33 34

其次,我们看一下单双层序列的不同dataprovider(见 :code:`sequenceGen.py` ):

- 单层序列的dataprovider如下:
  
  - word_slot是integer_value_sequence类型,代表单层序列。
  - label是integer_value类型,代表一个向量。

Y
Yu Yang 已提交
35 36 37
..  literalinclude:: ../../../paddle/gserver/tests/sequenceGen.py
    :language: python
    :lines: 21-39
Y
Yu Yang 已提交
38 39 40 41 42 43 44

- 双层序列的dataprovider如下:

  - word_slot是integer_value_sub_sequence类型,代表双层序列。
  - label是integer_value_sequence类型,代表单层序列,即一个子句一个label。注意:也可以为integer_value类型,代表一个向量,即一个句子一个label。通常根据任务需求进行不同设置。
  - 关于dataprovider中input_types的详细用法,参见PyDataProvider2。

Y
Yu Yang 已提交
45 46 47
..  literalinclude:: ../../../paddle/gserver/tests/sequenceGen.py
    :language: python
    :lines: 42-71
Y
Yu Yang 已提交
48 49 50 51 52 53

模型中的配置
------------

首先,我们看一下单层序列的配置(见 :code:`sequence_layer_group.conf`)。注意:batchsize=5表示一次过5句单层序列,因此2个batch就可以完成1个pass。

Y
Yu Yang 已提交
54 55 56
..  literalinclude:: ../../../paddle/gserver/tests/sequence_layer_group.conf
    :language: python
    :lines: 38-63
Y
Yu Yang 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73


其次,我们看一下语义相同的双层序列配置(见 :code:`sequence_nest_layer_group.conf` ),并对其详细分析:

- batchsize=2表示一次过2句双层序列。但从上面的数据格式可知,2句双层序列和5句单层序列的数据完全一样。
- data_layer和embedding_layer不关心数据是否是序列格式,因此两个配置在这两层上的输出是一样的。
- lstmemory\:

  - 单层序列过了一个mixed_layer和lstmemory_group。
  - 双层序列在同样的mixed_layer和lstmemory_group外,直接加了一层group。由于这个外层group里面没有memory,表示subseq间不存在联系,即起到的作用仅仅是把双层seq拆成单层,因此双层序列过完lstmemory的输出和单层的一样。

- last_seq\:

  - 单层序列直接取了最后一个元素
  - 双层序列首先(last_seq层)取了每个subseq的最后一个元素,将其拼接成一个新的单层序列;接着(expand_layer层)将其扩展成一个新的双层序列,其中第i个subseq中的所有向量均为输入的单层序列中的第i个向量;最后(average_layer层)取了每个subseq的平均值。
  - 分析得出:第一个last_seq后,每个subseq的最后一个元素就等于单层序列的最后一个元素,而expand_layer和average_layer后,依然保持每个subseq最后一个元素的值不变(这两层仅是为了展示它们的用法,实际中并不需要)。因此单双层序列的输出是一样旳。

Y
Yu Yang 已提交
74 75 76
..  literalinclude:: ../../../paddle/gserver/tests/sequence_nest_layer_group.conf
    :language: python
    :lines: 38-84
Y
Yu Yang 已提交
77 78 79 80 81 82 83 84 85 86 87

示例2:双进双出,subseq间有memory
=================================

配置:单层RNN( :code:`sequence_rnn.conf` ),双层RNN( :code:`sequence_nest_rnn.conf` 和 :code:`sequence_nest_rnn_readonly_memory.conf` ),语义完全相同。

读取双层序列的方法
------------------

我们看一下单双层序列的不同数据组织形式和dataprovider(见 :code:`rnn_data_provider.py`)

Y
Yu Yang 已提交
88 89 90
..  literalinclude::  ../../../paddle/gserver/tests/rnn_data_provider.py
    :language: python
    :lines: 20-32
Y
Yu Yang 已提交
91 92 93 94 95 96 97 98 99 100 101 102

- 单层序列:有两句,分别为[1,3,2,4,5,2]和[0,2,2,5,0,1,2]。
- 双层序列:有两句,分别为[[1,3,2],[4,5,2]](2个子句)和[[0,2],[2,5],[0,1,2]](3个子句)。
- 单双层序列的label都分别是0和1

模型中的配置
------------

我们选取单双层序列配置中的不同部分,来对比分析两者语义相同的原因。

- 单层序列:过了一个很简单的recurrent_group。每一个时间步,当前的输入y和上一个时间步的输出rnn_state做了一个全链接。

Y
Yu Yang 已提交
103 104 105
..  literalinclude:: ../../../paddle/gserver/tests/sequence_rnn.conf
    :language: python
    :lines: 36-48
Y
Yu Yang 已提交
106 107

- 双层序列,外层memory是一个元素:
Y
Yu Yang 已提交
108

Y
Yu Yang 已提交
109 110 111
  - 内层inner_step的recurrent_group和单层序列的几乎一样。除了boot_layer=outer_mem,表示将外层的outer_mem作为内层memory的初始状态。外层outer_step中,outer_mem是一个子句的最后一个向量,即整个双层group是将前一个子句的最后一个向量,作为下一个子句memory的初始状态。
  - 从输入数据上看,单双层序列的句子是一样的,只是双层序列将其又做了子序列划分。因此双层序列的配置中,必须将前一个子句的最后一个元素,作为boot_layer传给下一个子句的memory,才能保证和单层序列的配置中“每一个时间步都用了上一个时间步的输出结果”一致。

Y
Yu Yang 已提交
112 113 114
..  literalinclude:: ../../../paddle/gserver/tests/sequence_nest_rnn.conf
    :language: python
    :lines: 39-66
Y
Yu Yang 已提交
115 116

- 双层序列,外层memory是单层序列:
Y
Yu Yang 已提交
117

Y
Yu Yang 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
  - 由于外层每个时间步返回的是一个子句,这些子句的长度往往不等长。因此当外层有is_seq=True的memory时,内层是**无法直接使用**它的,即内层memory的boot_layer不能链接外层的这个memory。
  - 如果内层memory想**间接使用**这个外层memory,只能通过`pooling_layer`、`last_seq`或`first_seq`这三个layer将它先变成一个元素。但这种情况下,外层memory必须有boot_layer,否则在第0个时间步时,由于外层memory没有任何seq信息,因此上述三个layer的前向会报出“**Check failed: input.sequenceStartPositions**”的错误。

示例3:双进双出,输入不等长
===========================

.. role:: red

.. raw:: html

    <style> .red {color:red} </style>

**输入不等长** 是指recurrent_group的多个输入在各时刻的长度可以不相等, 但需要指定一个和输出长度一致的input,用 :red:`targetInlink` 表示。参考配置:单层RNN(:code:`sequence_rnn_multi_unequalength_inputs.conf`),双层RNN(:code:`sequence_nest_rnn_multi_unequalength_inputs.conf`)

读取双层序列的方法
------------------

Y
Yu Yang 已提交
135
我们看一下单双层序列的数据组织形式和dataprovider(见 :code:`rnn_data_provider.py` )
Y
Yu Yang 已提交
136

Y
Yu Yang 已提交
137 138 139
..  literalinclude:: ../../../paddle/gserver/tests/rnn_data_provider.py
    :language: python
    :lines: 69-97
Y
Yu Yang 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

data2 中有两个样本,每个样本有两个特征, 记fea1, fea2。

- 单层序列:两个样本分别为[[1, 2, 4, 5, 2], [5, 4, 1, 3, 1]] 和 [[0, 2, 2, 5, 0, 1, 2], [1, 5, 4, 2, 3, 6, 1]]
- 双层序列:两个样本分别为

  - **样本1**\:[[[1, 2], [4, 5, 2]], [[5, 4, 1], [3, 1]]]。fea1和fea2都分别有2个子句,fea1=[[1, 2], [4, 5, 2]], fea2=[[5, 4, 1], [3, 1]]
  - **样本2**\:[[[0, 2], [2, 5], [0, 1, 2]],[[1, 5], [4], [2, 3, 6, 1]]]。fea1和fea2都分别有3个子句, fea1=[[0, 2], [2, 5], [0, 1, 2]], fea2=[[1, 5], [4], [2, 3, 6, 1]]。<br/>
  - **注意**\:每个样本中,各特征的子句数目需要相等。这里说的“双进双出,输入不等长”是指fea1在i时刻的输入的长度可以不等于fea2在i时刻的输入的长度。如对于第1个样本,时刻i=2, fea1[2]=[4, 5, 2],fea2[2]=[3, 1],3≠2。

- 单双层序列中,两个样本的label都分别是0和1

模型中的配置
------------

Y
Yu Yang 已提交
155
单层RNN( :code:`sequence_rnn_multi_unequalength_inputs.conf`)和双层RNN( :code:`v.conf`)两个模型配置达到的效果完全一样,区别只在于输入为单层还是双层序列,现在我们来看它们内部分别是如何实现的。
Y
Yu Yang 已提交
156 157 158 159 160 161

- 单层序列\:

  - 过了一个简单的recurrent_group。每一个时间步,当前的输入y和上一个时间步的输出rnn_state做了一个全连接,功能与示例2中`sequence_rnn.conf`的`step`函数完全相同。这里,两个输入x1,x2分别通过calrnn返回最后时刻的状态。结果得到的encoder1_rep和encoder2_rep分别是单层序列,最后取encoder1_rep的最后一个时刻和encoder2_rep的所有时刻分别相加得到context。
  - 注意到这里recurrent_group输入的每个样本中,fea1和fea2的长度都分别相等,这并非偶然,而是因为recurrent_group要求输入为单层序列时,所有输入的长度都必须相等。

Y
Yu Yang 已提交
162 163 164
..  literalinclude:: ../../../paddle/gserver/tests/sequence_rnn_multi_unequalength_inputs.conf
    :language: python
    :lines: 41-58
Y
Yu Yang 已提交
165 166 167 168 169 170 171

- 双层序列\:

  - 双层RNN中,对输入的两个特征分别求时序上的连续全连接(`inner_step1`和`inner_step2`分别处理fea1和fea2),其功能与示例2中`sequence_nest_rnn.conf`的`outer_step`函数完全相同。不同之处是,此时输入`[SubsequenceInput(emb1), SubsequenceInput(emb2)]`在各时刻并不等长。
  - 函数`outer_step`中可以分别处理这两个特征,但我们需要用<font color=red>targetInlink</font>指定recurrent_group的输出的格式(各子句长度)只能和其中一个保持一致,如这里选择了和emb2的长度一致。
  - 最后,依然是取encoder1_rep的最后一个时刻和encoder2_rep的所有时刻分别相加得到context。

Y
Yu Yang 已提交
172 173 174
..  literalinclude:: ../../../paddle/gserver/tests/sequence_nest_rnn_multi_unequalength_inputs.conf
    :language: python
    :lines: 41-89
Y
Yu Yang 已提交
175 176 177 178 179

示例4:beam_search的生成
========================

TBD