conv_fusion_op.cu 23.1 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <array>
16

17
#include "paddle/fluid/framework/conv_search_cache.h"
Q
qingqing01 已提交
18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
20
#include "paddle/fluid/operators/conv_op.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
22
#include "paddle/phi/kernels/funcs/padding.h"
Q
qingqing01 已提交
23

24
DECLARE_int64(cudnn_exhaustive_search_times);
Q
qingqing01 已提交
25 26 27 28

namespace paddle {
namespace operators {

R
ronnywang 已提交
29
#if PADDLE_WITH_HIP || CUDNN_VERSION >= 7100
Q
qingqing01 已提交
30 31 32 33 34 35
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;
36
using framework::AlgorithmsCache;
37
using framework::ConvSearchCache;
38

Q
qingqing01 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

template <typename T>
class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* residual = ctx.Input<Tensor>("ResidualData");
    auto* output = ctx.Output<Tensor>("Output");
52
    output->mutable_data<T>(ctx.GetPlace());
Q
qingqing01 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    const std::string activation = ctx.Attr<std::string>("activation");
    int groups = ctx.Attr<int>("groups");
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");

    const T* filter_data = filter->data<T>();
    const T* bias_data = bias->data<T>();
66 67 68 69

    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");

70 71
    Tensor transformed_input_channel(input->dtype());
    Tensor transformed_output(output->dtype());
72 73
    transformed_input_channel = *input;
    transformed_output = *output;
74 75
    T* output_data = transformed_output.data<T>();

Q
qingqing01 已提交
76
    const T* residual_data = residual ? residual->data<T>() : output_data;
77

78 79 80
    // update padding and dilation
    auto in_dims = transformed_input_channel.dims();
    auto filter_dims = filter->dims();
81
    framework::DDim in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
82 83

    framework::DDim filter_data_dims =
84 85
        phi::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
86 87
    UpdatePaddingAndDilation(
        &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
88 89

    int data_dim = strides.size();  // 2d or 3d
90
    bool is_sys_pad = phi::funcs::IsSymmetricPadding(paddings, data_dim);
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
      new_input_shape_vec[1] = transformed_input_channel.dims()[1];

      std::vector<int> input_pad(transformed_input_channel.dims().size() * 2,
                                 0);
      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_input_channel.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
110
      framework::DDim new_input_shape(phi::make_ddim(new_input_shape_vec));
111 112 113 114 115 116 117 118 119 120 121
      transformed_input.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
122
          phi::funcs::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
123 124 125 126
              dev_ctx,
              input_pad,
              transformed_input_channel,
              pad_value,
127 128 129
              &transformed_input);
        } break;
        case 5: {
130
          phi::funcs::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
131 132 133 134
              dev_ctx,
              input_pad,
              transformed_input_channel,
              pad_value,
135 136 137
              &transformed_input);
        } break;
        default:
138 139
          PADDLE_THROW(platform::errors::PermissionDenied(
              "Operator Conv2DFusion expects Input to be a 4-D or 5-D Tensor. "
140
              "But received the actual dimension = %d, shape = [%s].",
141 142
              rank,
              transformed_input_channel.dims()));
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
      }

    } else {
      transformed_input = transformed_input_channel;
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
Q
qingqing01 已提交
159 160 161 162 163 164 165 166 167 168 169 170

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedTensorDescriptor bias_desc;
    ScopedConvolutionDescriptor conv_desc;
    ScopedActivationDescriptor act_desc;
    DataLayout layout = DataLayout::kNCHW;
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }
R
ronnywang 已提交
171 172 173
#ifdef PADDLE_WITH_HIP
    miopenConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(padding_common, strides, dilations);
174
    PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
175 176 177 178 179 180
        platform::dynload::miopenSetConvolutionGroupCount(cudnn_conv_desc,
                                                          groups));
    // Now only support NCHW
    std::vector<int> bias_dim = {
        1, static_cast<int>(transformed_output.dims()[1]), 1, 1};
    miopenTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
181
        layout, phi::vectorize<int>(transformed_input.dims()));
R
ronnywang 已提交
182
    miopenTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
183
        layout, phi::vectorize<int>(transformed_output.dims()));
184
    miopenTensorDescriptor_t cudnn_filter_desc =
185
        filter_desc.descriptor<T>(layout, phi::vectorize<int>(filter->dims()));
R
ronnywang 已提交
186 187 188 189
    miopenTensorDescriptor_t cudnn_bias_desc =
        bias_desc.descriptor<T>(layout, bias_dim);
    miopenActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);
Q
qingqing01 已提交
190

R
ronnywang 已提交
191 192 193 194
    miopenConvFwdAlgorithm_t algo;
    auto handle = dev_ctx.cudnn_handle();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();

195 196
    auto x_dims = phi::vectorize(transformed_input.dims());
    auto f_dims = phi::vectorize(filter->dims());
R
ronnywang 已提交
197 198

    size_t workspace_size = 0;
199
    PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
200
        platform::dynload::miopenConvolutionForwardGetWorkSpaceSize(
201 202 203 204 205 206
            handle,
            cudnn_filter_desc,
            cudnn_input_desc,
            cudnn_conv_desc,
            cudnn_output_desc,
            &workspace_size));
R
ronnywang 已提交
207 208 209
    int find_count;
    miopenConvAlgoPerf_t find_result;
    auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
210
      PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
211
          platform::dynload::miopenFindConvolutionForwardAlgorithm(
212 213 214 215 216 217 218 219 220 221 222 223 224 225
              handle,
              cudnn_input_desc,
              input_data,
              cudnn_filter_desc,
              filter_data,
              cudnn_conv_desc,
              cudnn_output_desc,
              output_data,
              kNUM_CUDNN_FWD_ALGS,
              &find_count,
              &find_result,
              cudnn_workspace_ptr,
              workspace_size,
              false));
R
ronnywang 已提交
226 227 228 229 230 231 232 233
    };
    workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
    algo = find_result.fwd_algo;
    VLOG(3) << "cuDNN forward algo " << algo;

    {
      ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
      auto cudnn_func = [&](void* cudnn_workspace) {
234 235 236 237 238 239 240 241 242 243 244 245 246 247
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::miopenConvolutionForward(handle,
                                                        &alpha,
                                                        cudnn_input_desc,
                                                        input_data,
                                                        cudnn_filter_desc,
                                                        filter_data,
                                                        cudnn_conv_desc,
                                                        algo,
                                                        &beta,
                                                        cudnn_output_desc,
                                                        output_data,
                                                        cudnn_workspace,
                                                        workspace_size));
R
ronnywang 已提交
248 249
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size);
250
      PADDLE_ENFORCE_GPU_SUCCESS(
251 252 253 254 255 256 257
          platform::dynload::miopenConvolutionForwardBias(handle,
                                                          &alpha,
                                                          cudnn_bias_desc,
                                                          bias_data,
                                                          &beta,
                                                          cudnn_output_desc,
                                                          output_data));
R
ronnywang 已提交
258
      if (activation != "identity") {
259 260 261 262 263 264 265 266 267
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::miopenActivationForward(handle,
                                                       cudnn_act_desc,
                                                       &alpha,
                                                       cudnn_output_desc,
                                                       output_data,
                                                       &beta,
                                                       cudnn_output_desc,
                                                       output_data));
R
ronnywang 已提交
268 269
      }
      if (residual) {
270 271 272 273 274 275 276 277 278 279 280 281
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::miopenOpTensor(handle,
                                              miopenTensorOpAdd,
                                              &alpha,
                                              cudnn_output_desc,
                                              output_data,
                                              &alpha,
                                              cudnn_output_desc,
                                              residual_data,
                                              &beta,
                                              cudnn_output_desc,
                                              output_data));
R
ronnywang 已提交
282 283 284
      }
    }
#else  // PADDLE_WITH_HIP
Q
qingqing01 已提交
285
    cudnnConvolutionDescriptor_t cudnn_conv_desc =
286
        conv_desc.descriptor<T>(padding_common, strides, dilations);
287 288
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionGroupCount(
        cudnn_conv_desc, groups));
Q
qingqing01 已提交
289 290

    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
291
        layout, phi::vectorize<int>(transformed_input.dims()));
Q
qingqing01 已提交
292
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
293
        layout, phi::vectorize<int>(transformed_output.dims()));
294
    cudnnFilterDescriptor_t cudnn_filter_desc =
295
        filter_desc.descriptor<T>(layout, phi::vectorize<int>(filter->dims()));
Q
qingqing01 已提交
296
    // Now only support NCHW
297 298
    std::vector<int> bias_dim = {
        1, static_cast<int>(transformed_output.dims()[1]), 1, 1};
Q
qingqing01 已提交
299 300 301 302 303 304 305
    cudnnTensorDescriptor_t cudnn_bias_desc =
        bias_desc.descriptor<T>(layout, bias_dim);
    cudnnActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);

    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
306
    size_t workspace_size_limit = 0;
Q
qingqing01 已提交
307 308
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
309
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
Q
qingqing01 已提交
310 311 312 313 314 315 316
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
    }

    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
    auto handle = dev_ctx.cudnn_handle();
C
chengduo 已提交
317
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
X
xiaoxiaohehe001 已提交
318
    auto dtype = platform::CudnnDataType<T>::type;
Q
qingqing01 已提交
319

320
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
321
        cudnn_conv_desc, CUDNN_DEFAULT_MATH));
X
xiaoxiaohehe001 已提交
322 323 324 325
    if (dtype == CUDNN_DATA_HALF) {
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
    }
A
AshburnLee 已提交
326
#if CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
A
AshburnLee 已提交
327
    if (!platform::allow_tf32_cudnn) {
328 329
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_FMA_MATH));
A
AshburnLee 已提交
330
    }
A
AshburnLee 已提交
331
#endif  // CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
Q
qingqing01 已提交
332

333 334
    auto x_dims = phi::vectorize(transformed_input.dims());
    auto f_dims = phi::vectorize(filter->dims());
335
    if (!exhaustive_search) {
336
#if CUDNN_VERSION >= 8000
337 338 339 340 341
      int perf_count;
      int best_algo_idx = 0;
      size_t tmp_size = 0;
      std::unique_ptr<cudnnConvolutionFwdAlgoPerf_t[]> perf_results(
          new cudnnConvolutionFwdAlgoPerf_t[kNUM_CUDNN_FWD_ALGS]);
342
      PADDLE_ENFORCE_GPU_SUCCESS(
343
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
344 345 346 347 348 349 350
              handle,
              cudnn_input_desc,
              cudnn_filter_desc,
              cudnn_conv_desc,
              cudnn_output_desc,
              kNUM_CUDNN_FWD_ALGS,
              &perf_count,
351 352
              perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;
353
      PADDLE_ENFORCE_GPU_SUCCESS(
354
          platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
355 356 357 358 359 360 361
              handle,
              cudnn_input_desc,
              cudnn_filter_desc,
              cudnn_conv_desc,
              cudnn_output_desc,
              algo,
              &workspace_size_in_bytes));
362 363
      if (workspace_size_in_bytes > workspace_size_limit)
        workspace_size_limit = workspace_size_in_bytes;
364
#else
365
      PADDLE_ENFORCE_GPU_SUCCESS(
366
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
367 368 369 370 371 372 373 374
              handle,
              cudnn_input_desc,
              cudnn_filter_desc,
              cudnn_conv_desc,
              cudnn_output_desc,
              CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit,
              &algo));
375 376
      VLOG(3) << "cuDNN forward algo " << algo;
#endif
Q
qingqing01 已提交
377
    } else {
378 379
      std::function<cudnnConvolutionFwdAlgo_t()> search_func =
          [&]() -> cudnnConvolutionFwdAlgo_t {
Q
qingqing01 已提交
380 381 382
        int returned_algo_count;
        std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
            fwd_perf_stat;
C
chengduo 已提交
383
        auto cudnn_find_func = [&](void* cudnn_workspace) {
384
          PADDLE_ENFORCE_GPU_SUCCESS(
C
chengduo 已提交
385
              platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
386 387 388 389 390 391 392 393 394 395 396 397 398
                  handle,
                  cudnn_input_desc,
                  input_data,
                  cudnn_filter_desc,
                  filter_data,
                  cudnn_conv_desc,
                  cudnn_output_desc,
                  output_data,
                  kNUM_CUDNN_FWD_ALGS,
                  &returned_algo_count,
                  fwd_perf_stat.data(),
                  cudnn_workspace,
                  workspace_size_limit));
C
chengduo 已提交
399
        };
400
        workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);
Q
qingqing01 已提交
401 402 403 404 405 406 407 408
        VLOG(3) << "Perf result: (algo: stat, time, memory)";
        for (int i = 0; i < returned_algo_count; ++i) {
          const auto& stat = fwd_perf_stat[i];
          VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time << " "
                  << stat.memory;
        }
        return fwd_perf_stat[0].algo;
      };
409
      AlgorithmsCache<cudnnConvolutionFwdAlgo_t>& algo_cache =
410
          *(framework::ConvSearchCache::Instance().GetConvFusion());
Q
qingqing01 已提交
411 412 413
      int search_times = ctx.Attr<int>("search_times");
      search_times = std::max(
          static_cast<int>(FLAGS_cudnn_exhaustive_search_times), search_times);
414
      // TODO(dangqingqing): Unify this if-else.
Q
qingqing01 已提交
415 416 417 418
      if (search_times > 0) {
        // The searched algo will be cached by `search_times` times for
        // different input dimension. For other dimensions, select the algo
        // of closest area.
419 420
        algo = algo_cache.GetAlgorithm(
            x_dims[2] * x_dims[3], search_times, 0, search_func);
Q
qingqing01 已提交
421
      } else {
422 423 424 425 426 427 428 429
        algo = algo_cache.GetAlgorithm(x_dims,
                                       f_dims,
                                       strides,
                                       paddings,
                                       dilations,
                                       0,
                                       dtype,
                                       search_func);
Q
qingqing01 已提交
430 431 432 433
      }
      VLOG(3) << "choose algo " << algo;
    }

434
    PADDLE_ENFORCE_GPU_SUCCESS(
435
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
436 437 438 439 440 441 442
            handle,
            cudnn_input_desc,
            cudnn_filter_desc,
            cudnn_conv_desc,
            cudnn_output_desc,
            algo,
            &workspace_size_in_bytes));
443
    PADDLE_ENFORCE_LE(
444 445
        workspace_size_in_bytes,
        workspace_size_limit,
446 447
        platform::errors::InvalidArgument(
            "The actual workspace size to be allocated for cuDNN is expected "
448
            "to be less than the limit. But received: the actual workspace "
449
            "size = %d, limit = %d.",
450 451
            workspace_size_in_bytes,
            workspace_size_limit));
Q
qingqing01 已提交
452

N
nhzlx 已提交
453
    if ((activation == "identity") && (!residual)) {
454 455 456 457 458 459
      // Only the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algo is
      // enabled with CUDNN_ACTIVATION_IDENTITY in cuDNN lib.
      // But test in some case, the speed is slower, change to use
      // cudnnConvolutionForward and cudnnAddTensor
      // ------------- cudnn conv forward and bias add ---------------------
      ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
C
chengduo 已提交
460
      auto cudnn_func = [&](void* cudnn_workspace) {
461 462 463 464 465 466 467 468 469 470 471 472 473 474
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cudnnConvolutionForward(handle,
                                                       &alpha,
                                                       cudnn_input_desc,
                                                       input_data,
                                                       cudnn_filter_desc,
                                                       filter_data,
                                                       cudnn_conv_desc,
                                                       algo,
                                                       cudnn_workspace,
                                                       workspace_size_in_bytes,
                                                       &beta,
                                                       cudnn_output_desc,
                                                       output_data));
C
chengduo 已提交
475 476
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
477 478 479 480 481 482 483 484
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnAddTensor(handle,
                                            &alpha,
                                            cudnn_bias_desc,
                                            bias_data,
                                            &alpha,
                                            cudnn_output_desc,
                                            output_data));
485 486 487 488 489 490 491
    } else {
      if (activation == "identity") {
        algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
      }
      // ------------------- cudnn conv+bias+act forward --------------------
      ScalingParamType<T> alpha1 = 1.0f;
      ScalingParamType<T> alpha2 = residual ? 1.0f : 0.0f;
C
chengduo 已提交
492
      auto cudnn_func = [&](void* cudnn_workspace) {
493
        PADDLE_ENFORCE_GPU_SUCCESS(
494
            platform::dynload::cudnnConvolutionBiasActivationForward(
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
                handle,
                &alpha1,
                cudnn_input_desc,
                input_data,
                cudnn_filter_desc,
                filter_data,
                cudnn_conv_desc,
                algo,
                cudnn_workspace,
                workspace_size_in_bytes,
                &alpha2,
                cudnn_output_desc,
                residual_data,
                cudnn_bias_desc,
                bias_data,
                cudnn_act_desc,
                cudnn_output_desc,
                output_data));
C
chengduo 已提交
513 514
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
515
    }
R
ronnywang 已提交
516
#endif
Q
qingqing01 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
    std::vector<int> channels = ctx.Attr<std::vector<int>>("split_channels");
    if (channels.size()) {
      auto outs = ctx.MultiOutput<framework::Tensor>("Outputs");
      if (x_dims[0] == 1) {
        // share data with Output
        framework::Tensor t;
        t.ShareDataWith(*output);
        auto y_dims = output->dims();
        t.Resize({y_dims[1], y_dims[2], y_dims[3]});
        int s = 0;
        for (size_t i = 0; i < channels.size(); ++i) {
          int e = s + channels[i];
          outs[i]->ShareDataWith(t.Slice(s, e));
          outs[i]->Resize({x_dims[0], channels[i], y_dims[2], y_dims[3]});
          s = e;
        }
      } else {
        // TODO(qingiqng): do copy when batch size large than 1
535
        PADDLE_THROW(platform::errors::Unimplemented(
536
            "Input with batch size greater than 1 is unsupported. The received "
537
            "batch size is %d, Input's shape is [%s].",
538 539
            x_dims[0],
            phi::make_ddim(x_dims)));
Q
qingqing01 已提交
540 541
      }
    }
Q
qingqing01 已提交
542 543
  }
};
D
Dang Qingqing 已提交
544
#endif
Q
qingqing01 已提交
545 546 547 548 549

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
R
ronnywang 已提交
550
#if CUDNN_VERSION >= 7100
551 552 553 554 555
REGISTER_OP_CUDA_KERNEL(
    conv2d_fusion,
    ops::CUDNNConvFusionOpKernel<float>,
    ops::CUDNNConvFusionOpKernel<double>,
    ops::CUDNNConvFusionOpKernel<paddle::platform::float16>);
D
Dang Qingqing 已提交
556
#endif
R
ronnywang 已提交
557 558 559
#ifdef PADDLE_WITH_HIP
REGISTER_OP_CUDA_KERNEL(conv2d_fusion, ops::CUDNNConvFusionOpKernel<float>);
#endif