initializer.py 42.8 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
16
import functools
17
from . import framework
18
from . import core
19 20 21 22 23
from .framework import (
    in_dygraph_mode,
    default_main_program,
    _current_expected_place,
)
24
from .lazy_init import lazy_init_helper
25
from .framework import program_guard
26
import numpy as np
27
from .core import VarDesc
W
Wu Yi 已提交
28
from . import unique_name
29
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
30
from paddle import _C_ops, _legacy_C_ops
31
import paddle
32

33
__all__ = [
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    'Constant',
    'Uniform',
    'Normal',
    'TruncatedNormal',
    'Xavier',
    'Bilinear',
    'MSRA',
    'ConstantInitializer',
    'UniformInitializer',
    'NormalInitializer',
    'TruncatedNormalInitializer',
    'XavierInitializer',
    'BilinearInitializer',
    'MSRAInitializer',
    'NumpyArrayInitializer',
    'set_global_initializer',
50
]
51

52 53 54
_global_weight_initializer_ = None
_global_bias_initializer_ = None

55

56
class Initializer:
57 58 59 60 61 62 63 64
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
65
    def __init__(self):
66 67
        pass

68
    def __call__(self, param, block=None):
69
        if not lazy_init_helper().state:
70 71 72 73 74
            return self.forward(param, block)

        return self._lazy_init(param, block)

    def forward(self, param, block=None):
75
        """Add corresponding initialization operations to the network"""
76 77
        raise NotImplementedError()

78
    def _lazy_init(self, param, block=None):
79 80 81
        """
        Apply lazy initialization
        """
82 83
        assert in_dygraph_mode()

84 85 86 87 88 89
        def init_op_creator(forward, param, block):
            new_var = param._to_static_var(True, block=block)
            # Record initializer operator
            with lazy_init_helper():
                forward(new_var, block)

90
        # Add hook function for initializing param in dygraph mode
91
        param.set_init_func(functools.partial(self.forward, param, block))
92 93 94
        param._init_op_creator = functools.partial(
            init_op_creator, self.forward, param
        )
95 96 97

        return param

98 99
    def _check_block(self, block):
        if block is None:
100
            block = default_main_program().global_block()
101 102 103

        return block

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

139 140 141

class ConstantInitializer(Initializer):
    """Implements the constant initializer
142 143

    Args:
144
        value (float32): constant value to initialize the variable
145 146 147 148

    Examples:
        .. code-block:: python

149 150 151
            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()
D
Double_V 已提交
152
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
153 154 155 156
            fc = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
157

158 159
    """

160
    def __init__(self, value=0.0, force_cpu=False):
161
        assert value is not None
162
        super().__init__()
163
        self._value = value
164
        self._force_cpu = force_cpu
165

166
    def forward(self, var, block=None):
167
        """Initialize the input tensor with constant.
168 169

        Args:
170 171 172
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
173 174

        Returns:
175
            The initialization op
176
        """
177 178
        block = self._check_block(block)

179 180 181
        assert isinstance(var, framework.Variable) or isinstance(
            var, framework.EagerParamBase
        )
182
        assert isinstance(block, framework.Block)
183

184 185
        if in_dygraph_mode():
            place = _current_expected_place()
186 187
            if self._force_cpu:
                place = core.CPUPlace()
188 189 190
            _C_ops.full_(
                var, var.shape, str(float(self._value)), var.dtype, place
            )
191
            return None
192
        else:
193 194 195 196 197 198 199 200 201 202 203 204
            op = block.append_op(
                type="fill_constant",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
                    "dtype": int(var.dtype),
                    "value": float(self._value),
                    'str_value': str(float(self._value)),
                    'force_cpu': self._force_cpu,
                },
                stop_gradient=True,
            )
205

206
            var.op = op
207
            return op
208 209 210


class UniformInitializer(Initializer):
211
    """Implements the random uniform distribution initializer
212 213 214 215 216

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
217 218 219 220 221 222
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
223 224 225 226

    Examples:
        .. code-block:: python

X
xiaoting 已提交
227
            import paddle.fluid as fluid
228
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
229
            fc = fluid.layers.fc(input=x, size=10,
230
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
231 232
    """

233 234 235
    def __init__(
        self, low=-1.0, high=1.0, seed=0, diag_num=0, diag_step=0, diag_val=1.0
    ):
236 237
        assert low is not None
        assert high is not None
238
        assert high >= low
239
        assert seed is not None
240 241 242 243
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
244
            assert diag_num > 0 and diag_step > 0
245
        super().__init__()
246 247 248
        self._low = low
        self._high = high
        self._seed = seed
249 250 251
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
252

253
    def forward(self, var, block=None):
254
        """Initialize the input tensor with Uniform distribution.
255 256

        Args:
257 258 259
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
260 261

        Returns:
262
            The initialization op
263
        """
264 265
        block = self._check_block(block)

266
        assert isinstance(block, framework.Block)
267 268 269 270 271 272
        check_variable_and_dtype(
            var,
            "Out",
            ["uint16", "float16", "float32", "float64"],
            "uniform_random",
        )
273

D
dzhwinter 已提交
274 275
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
276

X
polish  
Xin Pan 已提交
277
        # to be compatible of fp16 initializers
278
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
279
            out_dtype = VarDesc.VarType.FP32
280 281 282 283 284 285 286 287 288
            out_var = block.create_var(
                name=unique_name.generate(
                    ".".join(['uniform_random', var.name, 'tmp'])
                ),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False,
            )
W
Wu Yi 已提交
289 290 291 292
        else:
            out_dtype = var.dtype
            out_var = var

姜永久 已提交
293 294 295 296 297 298 299 300 301
        if in_dygraph_mode():
            out_var = _C_ops.uniform(
                var.shape,
                out_dtype,
                self._low,
                self._high,
                self._seed,
                _current_expected_place(),
            )
302
            if var.dtype == VarDesc.VarType.FP16:
姜永久 已提交
303
                var_tmp = _C_ops.cast(out_var, var.dtype)
304
                var_tmp._share_underline_tensor_to(var)
305
            else:
306
                out_var._share_underline_tensor_to(var)
307 308
            return None
        else:
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
            op = block.append_op(
                type="uniform_random",
                inputs={},
                outputs={"Out": out_var},
                attrs={
                    "shape": var.shape,
                    "dtype": out_dtype,
                    "min": self._low,
                    "max": self._high,
                    "seed": self._seed,
                    "diag_num": self._diag_num,
                    "diag_step": self._diag_step,
                    "diag_val": self._diag_val,
                },
                stop_gradient=True,
            )
325 326

            if var.dtype == VarDesc.VarType.FP16:
327 328 329 330 331 332
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype, "out_dtype": var.dtype},
                )
W
Wu Yi 已提交
333

334
            var.op = op
335
            return op
336 337 338


class NormalInitializer(Initializer):
339 340 341 342 343 344 345 346 347 348
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
349
            import paddle.fluid as fluid
350
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
351 352
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
353

354 355 356 357 358 359
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
360
        super().__init__()
361 362 363 364
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

365
    def forward(self, var, block=None):
366
        """Initialize the input tensor with Normal distribution.
367 368

        Args:
369 370 371
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
372 373

        Returns:
374
            The initialization op
375
        """
376 377
        block = self._check_block(block)

378
        assert isinstance(block, framework.Block)
379

380 381 382 383 384 385
        check_variable_and_dtype(
            var,
            "Out",
            ["uint16", "float16", "float32", "float64"],
            "guassian_random",
        )
386

D
dzhwinter 已提交
387 388
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
389

390 391
        if in_dygraph_mode():
            place = _current_expected_place()
392
            out_var = _C_ops.gaussian(
393 394 395 396 397 398 399
                var.shape,
                self._mean,
                self._std_dev,
                self._seed,
                var.dtype,
                place,
            )
400
            out_var._share_underline_tensor_to(var)
401 402
            return None

403
        else:
404 405 406 407 408 409 410 411 412 413 414 415 416
            op = block.append_op(
                type="gaussian_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
                    "dtype": var.dtype,
                    "mean": self._mean,
                    "std": self._std_dev,
                    "seed": self._seed,
                    "use_mkldnn": False,
                },
                stop_gradient=True,
            )
417
            var.op = op
418
            return op
419 420


421 422 423 424 425 426 427 428 429 430 431
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
432
            import paddle.fluid as fluid
433
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
434 435 436 437 438 439 440 441
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
442
        super().__init__()
443 444 445 446
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

447
    def forward(self, var, block=None):
448
        """Initialize the input tensor with TruncatedNormal distribution.
449 450

        Args:
451 452 453
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
454 455

        Returns:
456
            The initialization op
457
        """
458 459
        block = self._check_block(block)

460 461
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
462

463 464
        if self._seed == 0:
            self._seed = block.program.random_seed
465 466

        # to be compatible of fp16 initalizers
467
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
468
            out_dtype = VarDesc.VarType.FP32
469 470 471 472 473 474 475 476 477
            out_var = block.create_var(
                name=unique_name.generate(
                    ".".join(['truncated_gaussian_random', var.name, 'tmp'])
                ),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False,
            )
478 479 480 481
        else:
            out_dtype = var.dtype
            out_var = var

482
        if in_dygraph_mode():
483
            out_var = _C_ops.truncated_gaussian_random(
484 485 486 487 488 489 490
                var.shape,
                self._mean,
                self._std_dev,
                self._seed,
                out_dtype,
                _current_expected_place(),
            )
491
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
492
                var_tmp = _C_ops.cast(out_var, var.dtype)
493 494 495 496 497
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
            return None

498
        else:
499 500 501 502 503 504 505 506 507 508 509 510
            op = block.append_op(
                type="truncated_gaussian_random",
                outputs={"Out": out_var},
                attrs={
                    "shape": var.shape,
                    "dtype": out_dtype,
                    "mean": self._mean,
                    "std": self._std_dev,
                    "seed": self._seed,
                },
                stop_gradient=True,
            )
511

512
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
513 514 515 516 517 518
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype, "out_dtype": var.dtype},
                )
519
            var.op = op
520
            return op
521 522


523
class XavierInitializer(Initializer):
524
    r"""
525
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
526 527 528
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
529 530 531

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
532 533 534 535 536 537
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

538
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
539
    is
540

Q
qiaolongfei 已提交
541
    .. math::
542

Q
qiaolongfei 已提交
543
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
544 545


Q
qiaolongfei 已提交
546
    Args:
X
xiaoting 已提交
547 548
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
549
                inferred from the variable.
X
xiaoting 已提交
550
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
551 552 553 554 555 556 557 558 559
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
560
            import paddle.fluid as fluid
X
xiaoting 已提交
561
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
562 563 564 565 566 567 568
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
569 570
        assert uniform is not None
        assert seed is not None
571
        super().__init__()
572 573 574 575 576
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

577
    def forward(self, var, block=None):
578
        """Initialize the input tensor with Xavier initialization.
579 580

        Args:
581 582 583
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
584 585

        Returns:
586
            The initialization op
587
        """
588 589
        block = self._check_block(block)

590
        assert isinstance(block, framework.Block)
591 592 593 594 595 596
        check_variable_and_dtype(
            var,
            "Out",
            ["uint16", "float16", "float32", "float64"],
            "xavier_init",
        )
597

598 599 600 601 602 603
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
604 605 606
        if self._seed == 0:
            self._seed = block.program.random_seed

607
        # to be compatible of fp16 initalizers
608
        if var.dtype == VarDesc.VarType.FP16 or (
609 610
            var.dtype == VarDesc.VarType.BF16 and not self._uniform
        ):
611
            out_dtype = VarDesc.VarType.FP32
612 613 614 615 616 617 618 619 620
            out_var = block.create_var(
                name=unique_name.generate(
                    ".".join(['xavier_init', var.name, 'tmp'])
                ),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False,
            )
621 622 623 624
        else:
            out_dtype = var.dtype
            out_var = var

姜永久 已提交
625
        if in_dygraph_mode():
626
            if self._uniform:
627
                limit = math.sqrt(6.0 / float(fan_in + fan_out))
姜永久 已提交
628 629 630 631 632 633 634 635
                out_var = _C_ops.uniform(
                    out_var.shape,
                    out_dtype,
                    -limit,
                    limit,
                    self._seed,
                    _current_expected_place(),
                )
636
            else:
637
                std = math.sqrt(2.0 / float(fan_in + fan_out))
638

姜永久 已提交
639 640 641 642
                place = _current_expected_place()
                out_var = _C_ops.gaussian(
                    out_var.shape, 0.0, std, self._seed, out_dtype, place
                )
643 644

            if var.dtype == VarDesc.VarType.FP16 or (
645 646
                var.dtype == VarDesc.VarType.BF16 and not self._uniform
            ):
姜永久 已提交
647
                var_tmp = _C_ops.cast(out_var, var.dtype)
648
                var_tmp._share_underline_tensor_to(var)
649
            else:
650
                out_var._share_underline_tensor_to(var)
651
            return None
652
        else:
653
            if self._uniform:
654
                limit = math.sqrt(6.0 / float(fan_in + fan_out))
655 656 657 658 659 660 661 662 663 664 665 666 667
                op = block.append_op(
                    type="uniform_random",
                    inputs={},
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": out_dtype,
                        "min": -limit,
                        "max": limit,
                        "seed": self._seed,
                    },
                    stop_gradient=True,
                )
668
            else:
669
                std = math.sqrt(2.0 / float(fan_in + fan_out))
670 671 672 673 674 675 676 677 678 679 680 681
                op = block.append_op(
                    type="gaussian_random",
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": out_var.dtype,
                        "mean": 0.0,
                        "std": std,
                        "seed": self._seed,
                    },
                    stop_gradient=True,
                )
682 683

            if var.dtype == VarDesc.VarType.FP16 or (
684 685 686 687 688 689 690 691
                var.dtype == VarDesc.VarType.BF16 and not self._uniform
            ):
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype, "out_dtype": var.dtype},
                )
692

693
            var.op = op
694
            return op
695 696 697


class MSRAInitializer(Initializer):
698
    r"""Implements the MSRA initializer a.k.a. Kaiming Initializer
699 700

    This class implements the weight initialization from the paper
701 702 703 704 705 706 707 708
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

709
        x = gain \times \sqrt{\frac{3}{fan\_in}}
710 711 712 713 714 715

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

716
        \frac{gain}{\sqrt{{fan\_in}}}
717 718

    Args:
719 720 721
        uniform (bool, optional): whether to use uniform or normal distribution
        fan_in (float32|None, optional): fan_in (in_features) of trainable Tensor, If None, it will be infered automaticly. If you don't want to use in_features of the Tensor, you can set the value of 'fan_in' smartly by yourself. default is None.
        seed (int32, optional): random seed.
722 723
        negative_slope (float, optional): negative_slope (only used with leaky_relu). default is 0.0.
        nonlinearity(str, optional): the non-linear function. default is relu.
724 725 726 727 728 729

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
730

731
            import paddle
X
xsrobin 已提交
732
            import paddle.fluid as fluid
733
            paddle.enable_static()
D
Double_V 已提交
734
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
735 736
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
737

738 739
    """

740 741 742 743 744 745 746 747 748
    def __init__(
        self,
        uniform=True,
        fan_in=None,
        seed=0,
        negative_slope=0,
        nonlinearity='relu',
    ):
        """Constructor for MSRAInitializer"""
749 750
        assert uniform is not None
        assert seed is not None
751
        super().__init__()
752 753 754
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed
755 756
        self._negative_slope = negative_slope
        self._nonlinearity = nonlinearity
757

758
    def forward(self, var, block=None):
759
        """Initialize the input tensor with MSRA initialization.
760 761

        Args:
762 763 764
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
765 766

        Returns:
767
            The initialization op
768
        """
769 770
        block = self._check_block(block)

771 772 773 774 775 776 777
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
778 779 780
        if self._seed == 0:
            self._seed = block.program.random_seed

781
        # to be compatible of fp16 initalizers
782
        if var.dtype == VarDesc.VarType.FP16 or (
783 784
            var.dtype == VarDesc.VarType.BF16 and not self._uniform
        ):
785
            out_dtype = VarDesc.VarType.FP32
786 787 788 789 790 791 792 793 794
            out_var = block.create_var(
                name=unique_name.generate(
                    ".".join(['masra_init', var.name, 'tmp'])
                ),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False,
            )
795 796 797 798
        else:
            out_dtype = var.dtype
            out_var = var

姜永久 已提交
799
        if in_dygraph_mode():
800
            if self._uniform:
801 802
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                limit = gain * math.sqrt(3.0 / float(fan_in))
姜永久 已提交
803 804 805 806 807 808 809 810
                out_var = _C_ops.uniform(
                    var.shape,
                    out_dtype,
                    -limit,
                    limit,
                    self._seed,
                    _current_expected_place(),
                )
811
            else:
812 813
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                std = gain / math.sqrt(float(fan_in))
姜永久 已提交
814 815 816 817
                place = _current_expected_place()
                out_var = _C_ops.gaussian(
                    out_var.shape, 0.0, std, self._seed, out_dtype, place
                )
818 819

            if var.dtype == VarDesc.VarType.FP16 or (
820 821
                var.dtype == VarDesc.VarType.BF16 and not self._uniform
            ):
姜永久 已提交
822
                var_tmp = _C_ops.cast(out_var, var.dtype)
823
                var_tmp._share_underline_tensor_to(var)
824
            else:
825
                out_var._share_underline_tensor_to(var)
826
            return None
827
        else:
828
            if self._uniform:
829 830
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                limit = gain * math.sqrt(3.0 / float(fan_in))
831 832 833 834 835 836 837 838 839 840 841 842 843
                op = block.append_op(
                    type="uniform_random",
                    inputs={},
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": int(out_dtype),
                        "min": -limit,
                        "max": limit,
                        "seed": self._seed,
                    },
                    stop_gradient=True,
                )
844 845

            else:
846 847
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                std = gain / math.sqrt(float(fan_in))
848 849 850 851 852 853 854 855 856 857 858 859
                op = block.append_op(
                    type="gaussian_random",
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": int(out_dtype),
                        "mean": 0.0,
                        "std": std,
                        "seed": self._seed,
                    },
                    stop_gradient=True,
                )
860 861

            if var.dtype == VarDesc.VarType.FP16 or (
862 863 864 865 866 867 868 869
                var.dtype == VarDesc.VarType.BF16 and not self._uniform
            ):
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype, "out_dtype": var.dtype},
                )
870

871
            var.op = op
872
            return op
873 874


875
class BilinearInitializer(Initializer):
876
    """
877 878 879
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
880 881 882 883 884

    Examples:

        .. code-block:: python

885
            import math
886 887 888 889 890

            import paddle
            import paddle.nn as nn
            from paddle.regularizer import L2Decay

X
xsrobin 已提交
891 892
            factor = 2
            C = 2
D
Double_V 已提交
893 894
            B = 8
            H = W = 32
895 896 897 898
            w_attr = paddle.ParamAttr(learning_rate=0.,
                                      regularizer=L2Decay(0.),
                                      initializer=nn.initializer.Bilinear())
            data = paddle.rand([B, 3, H, W], dtype='float32')
C
cnn 已提交
899
            conv_up = nn.Conv2DTranspose(3,
900 901 902 903 904 905 906 907 908 909 910
                                         out_channels=C,
                                         kernel_size=2 * factor - factor % 2,
                                         padding=int(
                                             math.ceil((factor - 1) / 2.)),
                                         stride=factor,
                                         weight_attr=w_attr,
                                         bias_attr=False)
            x = conv_up(data)

    Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
    convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
911 912 913 914
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
915 916
    interpolation unchanged during training.

917 918 919
    """

    def __init__(self):
920
        """Constructor for BilinearInitializer."""
921
        super().__init__()
922

923
    def forward(self, var, block=None):
924
        """Initialize the input tensor with Bilinear initialization.
925 926

        Args:
927 928 929
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
930 931

        Returns:
932
            The initialization op
933
        """
934 935
        block = self._check_block(block)

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
951
        f = np.ceil(size / 2.0)
952
        # center
953
        c = (2 * f - 1 - f % 2) / (2.0 * f)
954 955 956 957 958 959
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

960
        # to be compatible of fp16 initalizers
961
        if var.dtype in [
962 963 964
            VarDesc.VarType.FP16,
            VarDesc.VarType.BF16,
            VarDesc.VarType.FP64,
965
        ]:
966
            out_dtype = VarDesc.VarType.FP32
967 968 969 970 971 972 973 974 975
            out_var = block.create_var(
                name=unique_name.generate(
                    ".".join(['bilinear_init', var.name, 'tmp'])
                ),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False,
            )
976 977 978 979 980
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
981 982 983
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
984 985
            raise TypeError("Unsupported dtype %s", var.dtype)

986 987
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
988

姜永久 已提交
989 990 991 992 993 994 995 996
        if in_dygraph_mode():
            _C_ops.assign_value_(
                out_var,
                list(shape),
                out_dtype,
                values,
                _current_expected_place(),
            )
997
            if var.dtype in [
998 999 1000
                VarDesc.VarType.FP16,
                VarDesc.VarType.BF16,
                VarDesc.VarType.FP64,
1001
            ]:
姜永久 已提交
1002
                var_tmp = _C_ops.cast(out_var, var.dtype)
1003
                var_tmp._share_underline_tensor_to(var)
1004
            else:
1005
                out_var._share_underline_tensor_to(var)
1006 1007
            return None
        else:
1008 1009 1010 1011 1012 1013 1014 1015 1016
            op = block.append_op(
                type='assign_value',
                outputs={'Out': [out_var]},
                attrs={
                    'dtype': out_dtype,
                    'shape': list(shape),
                    value_name: values,
                },
            )
1017 1018

            if var.dtype in [
1019 1020 1021
                VarDesc.VarType.FP16,
                VarDesc.VarType.BF16,
                VarDesc.VarType.FP64,
1022
            ]:
1023 1024 1025 1026 1027 1028
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype, "out_dtype": var.dtype},
                )
1029

1030
            var.op = op
1031
            return op
1032 1033


1034 1035
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
1036
    This op initialize the variable by numpy array.
1037 1038 1039 1040

    Args:
        value (numpy): numpy array to initialize the variable

1041 1042 1043
    Returns:
        A Tensor variable initialized by numpy.

1044 1045 1046
    Examples:
        .. code-block:: python

1047
            import paddle.fluid as fluid
1048 1049
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
1050 1051 1052 1053 1054 1055
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
1056

1057
        assert isinstance(value, numpy.ndarray)
1058
        super().__init__()
1059 1060
        self._value = value

1061
    def forward(self, var, block=None):
1062
        """Initialize the input tensor with Numpy array.
1063 1064

        Args:
1065 1066 1067
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
1068 1069

        Returns:
1070
            The initialization op
1071
        """
1072 1073
        block = self._check_block(block)

1074 1075
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
1076 1077

        # to be compatible of fp16 initalizers
1078
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
1079 1080
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
1081 1082 1083 1084 1085 1086 1087 1088 1089
            out_var = block.create_var(
                name=unique_name.generate(
                    ".".join(['numpy_array_init', var.name, 'tmp'])
                ),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False,
            )
1090 1091 1092 1093 1094 1095
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

        if out_dtype == VarDesc.VarType.FP32:
1096
            value_name = "fp32_values"
1097 1098
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
1099
            value_name = "int32_values"
1100
            values = [int(v) for v in np_value.flat]
1101 1102
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
1103
        if self._value.size > 1024 * 1024 * 1024:
1104 1105 1106 1107
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
1108

姜永久 已提交
1109 1110 1111 1112 1113 1114 1115 1116
        if in_dygraph_mode():
            _C_ops.assign_value_(
                out_var,
                list(self._value.shape),
                out_dtype,
                values,
                _current_expected_place(),
            )
1117
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
姜永久 已提交
1118
                var_tmp = _C_ops.cast(out_var, var.dtype)
1119
                var_tmp._share_underline_tensor_to(var)
1120
            else:
1121
                out_var._share_underline_tensor_to(var)
1122 1123
            return None
        else:
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
            op = block.append_op(
                type='assign_value',
                outputs={'Out': out_var},
                attrs={
                    'dtype': out_dtype,
                    'shape': list(self._value.shape),
                    value_name: values,
                },
                stop_gradient=True,
            )
1134 1135

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
1136 1137 1138 1139 1140 1141
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype, "out_dtype": var.dtype},
                )
1142

1143
            var.op = op
1144
            return op
1145 1146


1147 1148 1149 1150 1151 1152
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

1153
    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond
1154
    to ``paddle.ParamAttr`` , which is inherited from ``paddle.Tensor`` , and is a persistable Variable.
1155
    This API only takes effect for model parameters, not for variables created through apis such as
1156
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
1157

1158 1159 1160 1161 1162 1163 1164
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
1165
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters.
1166 1167 1168 1169 1170 1171 1172 1173
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python

1174 1175 1176 1177 1178
            import paddle
            import paddle.nn as nn

            nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant())
            x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
1179 1180 1181

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
1182 1183
            conv1 = nn.Conv2D(4, 6, (3, 3))
            y_var1 = conv1(x_var)
1184 1185 1186 1187

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
1188
            conv2 = nn.Conv2D(4, 6, (3, 3),
1189 1190 1191
                weight_attr=nn.initializer.XavierUniform(),
                bias_attr=nn.initializer.Normal())
            y_var2 = conv2(x_var)
1192 1193

            # Cancel the global initializer in framework, it will takes effect in subsequent code
1194
            nn.initializer.set_global_initializer(None)
1195
    """
1196

1197 1198 1199 1200 1201 1202
    check_type(
        weight_init,
        'weight_init',
        (Initializer, type(None)),
        'set_global_initializer',
    )
1203 1204 1205
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

1206 1207 1208 1209 1210 1211
    check_type(
        bias_init,
        'bias_init',
        (Initializer, type(None)),
        'set_global_initializer',
    )
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


1230 1231
def calculate_gain(nonlinearity, param=None):
    """
1232
    Get the recommended ``gain`` value of some nonlinearity function. ``gain`` value can be used in some
1233
    ``paddle.nn.initializer`` api to adjust the initialization value.
1234 1235

    Args:
1236
        nonlinearity(str): name of nonlinearity activation function. If it is a linear function, such as:
1237
            `linear/conv1d/conv2d/conv3d/conv1d_transpose/conv2d_transpose/conv3d_transpose` , 1.0 will be returned.
1238
        param(bool|int|float, optional): optional parameter for somme nonlinearity function. Now, it only applies to
1239
            'leaky_relu'. Default: None, it will be calculated as 0.01 in the formula.
1240 1241

    Returns:
1242
        A float value, which is the recommended gain for this nonlinearity function.
1243 1244 1245

    Examples:
        .. code-block:: python
1246

1247 1248 1249
            import paddle
            gain = paddle.nn.initializer.calculate_gain('tanh') # 5.0 / 3
            gain = paddle.nn.initializer.calculate_gain('leaky_relu', param=1.0) # 1.0 = math.sqrt(2.0 / (1+param^2))
1250
            initializer = paddle.nn.initializer.Orthogonal(gain)
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

    """
    if param is None:
        param = 0.01
    else:
        assert isinstance(param, (bool, int, float))
        param = float(param)
    recommended_gain = {
        'sigmoid': 1,
        'linear': 1,
        'conv1d': 1,
        'conv2d': 1,
        'conv3d': 1,
1264 1265 1266
        'conv1d_transpose': 1,
        'conv2d_transpose': 1,
        'conv3d_transpose': 1,
1267 1268 1269
        'tanh': 5.0 / 3,
        'relu': math.sqrt(2.0),
        'leaky_relu': math.sqrt(2.0 / (1 + param**2)),
1270
        'selu': 3.0 / 4,
1271 1272 1273 1274
    }
    if nonlinearity in recommended_gain.keys():
        return recommended_gain[nonlinearity]
    else:
1275 1276
        raise ValueError(
            "nonlinearity function {} is not suppported now.".format(
1277 1278 1279
                nonlinearity
            )
        )
1280 1281


1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1294
TruncatedNormal = TruncatedNormalInitializer
1295 1296
Xavier = XavierInitializer
MSRA = MSRAInitializer
1297
Bilinear = BilinearInitializer