trainer_config.lr.py 2.6 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# edit-mode: -*- python -*-

# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer_config_helpers import *

E
emailweixu 已提交
19
dict_file = get_config_arg('dict_file', str, "./data/dict.txt")
Z
zhangjinchao01 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
word_dict = dict()
with open(dict_file, 'r') as f:
    for i, line in enumerate(f):
        w = line.strip().split()[0]
        word_dict[w] = i

is_predict = get_config_arg('is_predict', bool, False)
trn = 'data/train.list' if not is_predict else None
tst = 'data/test.list' if not is_predict else 'data/pred.list'
process = 'process' if not is_predict else 'process_predict'

# define the data sources for the model.
# We need to use different process for training and prediction.
# For training, the input data includes both word IDs and labels.
# For prediction, the input data only includs word Ids.
define_py_data_sources2(train_list=trn,
                        test_list=tst,
                        module="dataprovider_bow",
                        obj=process,
                        args={"dictionary": word_dict})

batch_size = 128 if not is_predict else 1
settings(
    batch_size=batch_size,
    learning_rate=2e-3,
    learning_method=AdamOptimizer(),
    regularization=L2Regularization(8e-4),
    gradient_clipping_threshold=25
)

# Define the data for text features. The size of the data layer is the number
# of words in the dictionary.
data = data_layer(name="word", size=len(word_dict))

# Define a fully connected layer with logistic activation.
# (also called softmax activation).
output = fc_layer(input=data, size=2, act=SoftmaxActivation())

if not is_predict:
    # For training, we need label and cost

    # define the category id for each example.
    # The size of the data layer is the number of labels.
    label = data_layer(name="label", size=2)

    # Define cross-entropy classification loss and error.
    cls = classification_cost(input=output, label=label)
    outputs(cls)
else:
    # For prediction, no label is needed. We need to output
    # We need to output classification result, and class probabilities.
    maxid = maxid_layer(output)
    outputs([maxid, output])