softmax_with_cross_entropy_op.cu 18.9 KB
Newer Older
S
sneaxiy 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

C
caoying03 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
S
sneaxiy 已提交
14 15
#include <cub/cub.cuh>
#include "paddle/fluid/operators/math/cross_entropy.h"
Y
Yi Wang 已提交
16
#include "paddle/fluid/operators/softmax_with_cross_entropy_op.h"
S
sneaxiy 已提交
17
#include "paddle/fluid/platform/for_range.h"
18

C
caoying03 已提交
19 20 21 22 23
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

24
namespace {
C
caoying03 已提交
25
template <typename T>
26
__global__ void CrossEntropyGrad(T* logit_grad, const int64_t* labels,
27 28
                                 const int batch_size, const int class_num,
                                 const int ignore_index) {
29 30 31
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < batch_size;
       i += blockDim.x * gridDim.x) {
    int idx = i * class_num + labels[i];
B
Bai Yifan 已提交
32 33
    logit_grad[idx] -=
        ignore_index == labels[i] ? static_cast<T>(0.) : static_cast<T>(1.);
Y
Yu Yang 已提交
34
  }
35
}
Y
Yu Yang 已提交
36

37 38 39 40 41 42
template <typename T>
__global__ void Scale(T* logit_grad, const T* loss_grad, const int num,
                      const int class_num) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < num;
       i += blockDim.x * gridDim.x) {
    logit_grad[i] *= loss_grad[i / class_num];
43 44 45 46 47 48 49 50 51 52 53 54
  }
}

template <typename T>
__global__ void SoftCrossEntropyGradientKernel(T* logit_grad,
                                               const T* loss_grad,
                                               const T* labels,
                                               const int batch_size,
                                               const int class_num) {
  int ids = blockIdx.x * blockDim.x + threadIdx.x;
  if (ids < batch_size * class_num) {
    int row_ids = ids / class_num;
C
caoying03 已提交
55
    logit_grad[ids] = loss_grad[row_ids] * (logit_grad[ids] - labels[ids]);
C
caoying03 已提交
56
  }
C
caoying03 已提交
57
}
S
sneaxiy 已提交
58

59
}  // namespace
C
caoying03 已提交
60

S
sneaxiy 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
static __device__ __forceinline__ float real_exp(float x) { return expf(x); }
static __device__ __forceinline__ double real_exp(double x) { return exp(x); }
static __device__ __forceinline__ float real_log(float x) {
  return math::TolerableValue<float>()(logf(x));
}
static __device__ __forceinline__ double real_log(double x) {
  return math::TolerableValue<double>()(log(x));
}

/** In the following codes, 3 CUDA kernels are implemented to calculate softmax
 * and loss **/
/*
  Supposing the x is `logits` and y is `labels`, the equations are as
followings:

  cross\_entropy_i = \sum_{j}[- y_i_j * log({e^{x_i_j}/\sum_{j}e^{x_i_j}})]
        = \sum_{j}[- y_i_j * log({e^{x_i_j - max_i}/\sum_{j}e^{x_i_j-max_i}})]
        = \sum_{j}[-y_i_j * (x_i_j - max_i - log\sum_{j}e^{x_i_j - max_i})]
        = \sum_{j}[-y_i_j * (x_i_j - max_i - logDiffMaxSum_i)]
        = \sum_{j}(-y_i_j * tmp_i_j)

  softmax_i_j = e^{tmp_i_j}

where:
  max_i = \max_{j}{x_i_j}
  logDiffMaxSum_i = log\sum_{j}e^{x_i_j - max_i}
  tmp_i_j = x_i_j - max_i - logDiffMaxSum_i

Therefore, the calculation can be separated into 3 steps:
Step 1: row-wise operation to calculate max_i
Step 2: row-wise operation to calculate logDiffMaxSum_i
Step 3: caculate tmp_i_j, and finally get softmax_i_j and cross\_entropy_i

To save memory, we can share memory among max_i, logDiffMaxSum_i and
cross\_entropy_i.
In this way, the 3 steps should be changed to:
Step 1 (RowReductionForMax): row-wise operation to calculate max_i
Step 2 (RowReductionForDiffMaxSum): calculate immediate result of softmax'_i_j =
x_i_j - max_i, and row-wise operation to calculate logDiffMaxSum_i
Step 3 (RowReductionForSoftmaxAndCrossEntropy): calculate tmp_i_j = softmax'_i_j
- logDiffMaxSum_i, and finally get softmax_i_j and cross\_entropy_i
*/

// There are 3 kinds of reduce algorithms in cub:
// BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY
// BLOCK_REDUCE_RAKING
// BLOCK_REDUCE_WARP_REDUCTIONS (default)
template <typename T, int BlockDim>
using BlockReduce =
    cub::BlockReduce<T, BlockDim /*, cub::BLOCK_REDUCE_WARP_REDUCTIONS*/>;

template <typename T, int BlockDim>
using BlockReduceTempStorage = typename BlockReduce<T, BlockDim>::TempStorage;

// Make sure that BlockDim <= feature_size
// This kernel is used to calculate the max element of each row
template <typename T, int BlockDim>
S
sneaxiy 已提交
118 119
static __global__ void RowReductionForMax(const T* logits_data, T* max_data,
                                          int feature_size) {
S
sneaxiy 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
  __shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;

  auto beg_idx = feature_size * blockIdx.x + threadIdx.x;
  auto end_idx = feature_size * (blockIdx.x + 1);

  T cur_max = logits_data[beg_idx];
  beg_idx += BlockDim;
  while (beg_idx < end_idx) {
    if (cur_max < logits_data[beg_idx]) {
      cur_max = logits_data[beg_idx];
    }
    beg_idx += BlockDim;
  }

  cur_max = BlockReduce<T, BlockDim>(temp_storage).Reduce(cur_max, cub::Max());

  if (threadIdx.x == 0) {
    max_data[blockIdx.x] = cur_max < -64 ? -64 : cur_max;
  }
}

// Make sure that BlockDim <= feature_size
S
sneaxiy 已提交
142 143 144 145
template <typename T, int BlockDim, bool CalculateLogSoftmax = false>
static __global__ void RowReductionForDiffMaxSum(const T* logits_data,
                                                 T* max_data, T* softmax,
                                                 int feature_size) {
S
sneaxiy 已提交
146 147 148 149 150 151 152 153 154
  __shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;

  auto beg_idx = feature_size * blockIdx.x + threadIdx.x;
  auto end_idx = feature_size * (blockIdx.x + 1);

  auto block_max = max_data[blockIdx.x];

  softmax[beg_idx] = logits_data[beg_idx] - block_max;
  T diff_max_sum = real_exp(softmax[beg_idx]);
S
sneaxiy 已提交
155 156 157 158 159
  auto idx = beg_idx + BlockDim;
  while (idx < end_idx) {
    softmax[idx] = logits_data[idx] - block_max;
    diff_max_sum += real_exp(softmax[idx]);
    idx += BlockDim;
S
sneaxiy 已提交
160 161 162 163 164
  }

  diff_max_sum =
      BlockReduce<T, BlockDim>(temp_storage).Reduce(diff_max_sum, cub::Sum());
  if (threadIdx.x == 0) max_data[blockIdx.x] = real_log(diff_max_sum);
S
sneaxiy 已提交
165 166 167 168 169 170 171 172 173 174 175

  if (!CalculateLogSoftmax) return;
  __syncthreads();
  diff_max_sum = max_data[blockIdx.x];
  softmax[beg_idx] -= diff_max_sum;
  beg_idx += BlockDim;
  while (beg_idx < end_idx) {
    softmax[beg_idx] -= diff_max_sum;
    beg_idx += BlockDim;
  }
  if (threadIdx.x == 0) max_data[blockIdx.x] = 0;
S
sneaxiy 已提交
176 177 178 179
}

// Make sure that BlockDim <= feature_size
template <typename T, int BlockDim>
S
sneaxiy 已提交
180 181 182
static __global__ void RowReductionForSoftmaxAndCrossEntropy(
    const T* logits_data, const T* labels_data, T* loss_data, T* softmax,
    int feature_size) {
S
sneaxiy 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
  __shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;

  auto beg_idx = feature_size * blockIdx.x + threadIdx.x;
  auto end_idx = feature_size * (blockIdx.x + 1);

  // log_diff_max_sum shares memory with loss
  auto block_log_diff_max_sum = loss_data[blockIdx.x];
  auto tmp = softmax[beg_idx] - block_log_diff_max_sum;
  softmax[beg_idx] = real_exp(tmp);
  auto loss = -labels_data[beg_idx] * tmp;
  beg_idx += BlockDim;
  while (beg_idx < end_idx) {
    tmp = softmax[beg_idx] - block_log_diff_max_sum;
    softmax[beg_idx] = real_exp(tmp);
    loss -= (labels_data[beg_idx] * tmp);
    beg_idx += BlockDim;
  }

  loss = BlockReduce<T, BlockDim>(temp_storage).Reduce(loss, cub::Sum());
  if (threadIdx.x == 0) loss_data[blockIdx.x] = loss;
}

template <typename T>
S
sneaxiy 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
struct HardLabelSoftmaxWithCrossEntropyFunctor {
 public:
  HardLabelSoftmaxWithCrossEntropyFunctor(const T* logits,
                                          const int64_t* labels, T* loss,
                                          T* log_softmax, int feature_size)
      : logits_(logits),
        labels_(labels),
        loss_(loss),
        log_softmax_(log_softmax),
        feature_size_(feature_size) {}

  __device__ void operator()(int idx) const {
    auto row_idx = idx / feature_size_;
    auto col_idx = idx % feature_size_;
    if (col_idx != labels_[row_idx]) {
      log_softmax_[idx] = real_exp(log_softmax_[idx]);
    } else {
      auto softmax = log_softmax_[idx];
      log_softmax_[idx] = real_exp(softmax);
      loss_[row_idx] = -softmax;
    }
  }

 private:
  const T* logits_;
  const int64_t* labels_;
  T* loss_;
  T* log_softmax_;
  int feature_size_;
};

template <typename T>
struct HardLabelSoftmaxWithCrossEntropyFunctorWithIgnoreIdx {
 public:
  HardLabelSoftmaxWithCrossEntropyFunctorWithIgnoreIdx(const T* logits,
                                                       const int64_t* labels,
                                                       T* loss, T* log_softmax,
                                                       int feature_size,
                                                       int ignore_idx)
      : logits_(logits),
        labels_(labels),
        loss_(loss),
        log_softmax_(log_softmax),
        feature_size_(feature_size),
        ignore_idx_(ignore_idx) {}

  __device__ void operator()(int idx) const {
    auto row_idx = idx / feature_size_;
    auto col_idx = idx % feature_size_;
    if (col_idx != labels_[row_idx] || col_idx == ignore_idx_) {
      log_softmax_[idx] = real_exp(log_softmax_[idx]);
    } else {
      auto softmax = log_softmax_[idx];
      log_softmax_[idx] = real_exp(softmax);
      loss_[row_idx] = -softmax;
    }
  }

 private:
  const T* logits_;
  const int64_t* labels_;
  T* loss_;
  T* log_softmax_;
  int feature_size_;
  int ignore_idx_;
};

template <typename T>
static __global__ void SetSoftmaxToOneWhenFeatureSizeIsOne(T* out,
                                                           int batch_size) {
S
sneaxiy 已提交
276 277 278 279
  auto idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < batch_size) out[idx] = static_cast<T>(1);
}

S
sneaxiy 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
template <typename T>
static void HardLabelSoftmaxWithCrossEntropy(
    const platform::CUDADeviceContext& ctx, const T* logits_data,
    const int64_t* labels_data, T* loss_data, T* softmax_data, int batch_size,
    int feature_size, int ignore_idx) {
  constexpr int kMaxBlockDim = 512;
  int block_dim = feature_size >= kMaxBlockDim
                      ? kMaxBlockDim
                      : (1 << static_cast<int>(std::log2(feature_size)));
  auto stream = ctx.stream();

#define CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(BlockDim)    \
  case BlockDim: {                                                           \
    RowReductionForMax<T, BlockDim><<<batch_size, BlockDim, 0, stream>>>(    \
        logits_data, loss_data, feature_size);                               \
    RowReductionForDiffMaxSum<T, BlockDim,                                   \
                              true><<<batch_size, BlockDim, 0, stream>>>(    \
        logits_data, loss_data, softmax_data, feature_size);                 \
    platform::ForRange<platform::CUDADeviceContext> for_range(               \
        ctx, batch_size* feature_size);                                      \
    if (ignore_idx >= 0 && ignore_idx < feature_size) {                      \
      for_range(HardLabelSoftmaxWithCrossEntropyFunctorWithIgnoreIdx<T>(     \
          logits_data, labels_data, loss_data, softmax_data, feature_size,   \
          ignore_idx));                                                      \
    } else {                                                                 \
      for_range(HardLabelSoftmaxWithCrossEntropyFunctor<T>(                  \
          logits_data, labels_data, loss_data, softmax_data, feature_size)); \
    }                                                                        \
  } break

  switch (block_dim) {
    CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(512);
    CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(256);
    CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(128);
    CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(64);
    CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(32);
    CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(16);
    CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(8);
    CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(4);
    CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(2);
    case 1:
      SetSoftmaxToOneWhenFeatureSizeIsOne<<<(batch_size + kMaxBlockDim - 1) /
                                                kMaxBlockDim,
                                            kMaxBlockDim, 0, stream>>>(
          softmax_data, batch_size);
      cudaMemsetAsync(loss_data, 0, batch_size * sizeof(T), stream);
      break;
    default:
      PADDLE_THROW("BlockDim must be 2^n in softmax_with_cross_entropy_op");
      break;
  }
#undef CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL
}

S
sneaxiy 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
template <typename T>
static void SoftmaxWithCrossEntropyFusedKernel(const T* logits_data,
                                               const T* labels_data,
                                               T* softmax_data, T* loss_data,
                                               int batch_size, int feature_size,
                                               cudaStream_t stream) {
  constexpr int kMaxBlockDim = 512;
  int block_dim = feature_size >= kMaxBlockDim
                      ? kMaxBlockDim
                      : (1 << static_cast<int>(std::log2(feature_size)));

#define CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(BlockDim)                \
  case BlockDim:                                                              \
    RowReductionForMax<T, BlockDim><<<batch_size, BlockDim, 0, stream>>>(     \
        logits_data, loss_data, feature_size);                                \
    RowReductionForDiffMaxSum<T,                                              \
                              BlockDim><<<batch_size, BlockDim, 0, stream>>>( \
        logits_data, loss_data, softmax_data, feature_size);                  \
    RowReductionForSoftmaxAndCrossEntropy<                                    \
        T, BlockDim><<<batch_size, BlockDim, 0, stream>>>(                    \
        logits_data, labels_data, loss_data, softmax_data, feature_size);     \
    break

  switch (block_dim) {
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(512);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(256);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(128);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(64);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(32);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(16);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(8);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(4);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(2);
    case 1:
      SetSoftmaxToOneWhenFeatureSizeIsOne<<<(batch_size + kMaxBlockDim - 1) /
                                                kMaxBlockDim,
                                            kMaxBlockDim, 0, stream>>>(
          softmax_data, batch_size);
S
sneaxiy 已提交
372
      cudaMemsetAsync(loss_data, 0, batch_size * sizeof(T), stream);
S
sneaxiy 已提交
373 374 375 376 377 378 379 380 381
      break;
    default:
      PADDLE_THROW("BlockDim must be 2^n in softmax_with_cross_entropy_op");
      break;
  }

#undef CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL
}

C
caoying03 已提交
382
template <typename T>
Y
Yu Yang 已提交
383
class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel<T> {
C
caoying03 已提交
384 385 386 387 388
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()),
                   "This kernel only runs on GPU device.");
    const Tensor* logits = context.Input<Tensor>("Logits");
389
    const Tensor* labels = context.Input<Tensor>("Label");
C
caoying03 已提交
390 391
    Tensor* softmax = context.Output<Tensor>("Softmax");

392
    Tensor* loss = context.Output<Tensor>("Loss");
S
sneaxiy 已提交
393 394 395 396
    auto* softmax_data = softmax->mutable_data<T>(context.GetPlace());
    auto* loss_data = loss->mutable_data<T>(context.GetPlace());

    auto soft_label = context.Attr<bool>("soft_label");
397
    auto ignore_index = context.Attr<int>("ignore_index");
S
sneaxiy 已提交
398 399 400 401 402 403 404 405 406
    if (soft_label) {
      int batch_size = logits->dims()[0];
      int feature_size = logits->dims()[1];
      auto* logits_data = logits->data<T>();
      auto* labels_data = labels->data<T>();
      SoftmaxWithCrossEntropyFusedKernel(
          logits_data, labels_data, softmax_data, loss_data, batch_size,
          feature_size, context.cuda_device_context().stream());
    } else {
S
sneaxiy 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
      if (!context.Attr<bool>("numeric_stable_mode")) {
        math::SoftmaxCUDNNFunctor<T>()(context.cuda_device_context(), logits,
                                       softmax);
        math::CrossEntropyFunctor<platform::CUDADeviceContext, T>()(
            context.cuda_device_context(), loss, softmax, labels, false,
            ignore_index);
      } else {
        int batch_size = logits->dims()[0];
        int feature_size = logits->dims()[1];
        auto* logits_data = logits->data<T>();
        auto* labels_data = labels->data<int64_t>();
        HardLabelSoftmaxWithCrossEntropy<T>(
            context.cuda_device_context(), logits_data, labels_data, loss_data,
            softmax_data, batch_size, feature_size, ignore_index);
      }
S
sneaxiy 已提交
422
    }
C
caoying03 已提交
423 424 425 426
  }
};

template <typename T>
Y
Yu Yang 已提交
427
class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel<T> {
C
caoying03 已提交
428 429 430 431
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()),
                   "This kernel only runs on GPU device.");
432 433 434
    const Tensor* labels = context.Input<Tensor>("Label");
    const T* loss_grad_data =
        context.Input<Tensor>(framework::GradVarName("Loss"))->data<T>();
C
caoying03 已提交
435 436
    Tensor* logit_grad =
        context.Output<Tensor>(framework::GradVarName("Logits"));
437
    logit_grad->ShareDataWith(*context.Input<Tensor>("Softmax"));
C
caoying03 已提交
438 439 440 441
    T* logit_grad_data = logit_grad->data<T>();

    const int batch_size = logit_grad->dims()[0];
    const int class_num = logit_grad->dims()[1];
442
    int block = 512;
443
    auto stream = context.cuda_device_context().stream();
444
    auto ignore_index = context.Attr<int>("ignore_index");
445
    if (context.Attr<bool>("soft_label")) {
446
      int grid = (batch_size * class_num + block - 1) / block;
447
      const T* label_data = labels->data<T>();
448 449
      SoftCrossEntropyGradientKernel<T><<<grid, block, 0, stream>>>(
          logit_grad_data, loss_grad_data, label_data, batch_size, class_num);
450
    } else {
451
      int grid = (batch_size + block - 1) / block;
C
caoying03 已提交
452
      const int64_t* label_data = labels->data<int64_t>();
453
      CrossEntropyGrad<T><<<grid, block, 0, stream>>>(
454
          logit_grad_data, label_data, batch_size, class_num, ignore_index);
455 456 457 458
      int num = batch_size * class_num;
      grid = (num + block - 1) / block;
      Scale<T><<<grid, block, 0, stream>>>(logit_grad_data, loss_grad_data, num,
                                           class_num);
459
    }
C
caoying03 已提交
460 461 462 463 464 465 466
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Q
QI JUN 已提交
467 468 469 470 471 472
REGISTER_OP_CUDA_KERNEL(softmax_with_cross_entropy,
                        ops::SoftmaxWithCrossEntropyCUDAKernel<float>,
                        ops::SoftmaxWithCrossEntropyCUDAKernel<double>);
REGISTER_OP_CUDA_KERNEL(softmax_with_cross_entropy_grad,
                        ops::SoftmaxWithCrossEntropyGradCUDAKernel<float>,
                        ops::SoftmaxWithCrossEntropyGradCUDAKernel<double>);