generate_op.py 23.0 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
from pathlib import Path

import yaml
20
from filters import (
21
    cartesian_prod_mapping,
J
Jiabin Yang 已提交
22
    to_composite_grad_opmaker_name,
23
    to_input_name,
24 25
    to_int_array_tensor_name,
    to_int_array_tensors_name,
26 27 28 29
    to_op_attr_type,
    to_opmaker_name,
    to_opmaker_name_cstr,
    to_pascal_case,
30
    to_scalar_tensor_name,
31
)
32 33
from jinja2 import Environment, FileSystemLoader, StrictUndefined
from parse_utils import to_named_dict
34
from tests import (
35
    is_base_op,
J
Jiabin Yang 已提交
36
    is_composite_op,
37
    is_initializer_list,
38 39
    is_scalar,
    is_vec,
40 41 42
    supports_inplace,
    supports_no_need_buffer,
)
43 44

file_loader = FileSystemLoader(Path(__file__).parent / "templates")
45 46 47 48 49 50 51 52
env = Environment(
    loader=file_loader,
    keep_trailing_newline=True,
    trim_blocks=True,
    lstrip_blocks=True,
    undefined=StrictUndefined,
    extensions=['jinja2.ext.do'],
)
53 54 55
env.filters["to_op_attr_type"] = to_op_attr_type
env.filters["to_opmaker_name"] = to_opmaker_name
env.filters["to_pascal_case"] = to_pascal_case
56 57 58
env.filters["to_scalar_tensor_name"] = to_scalar_tensor_name
env.filters["to_int_array_tensor_name"] = to_int_array_tensor_name
env.filters["to_int_array_tensors_name"] = to_int_array_tensors_name
59 60
env.filters["to_input_name"] = to_input_name
env.filters["to_opmaker_name_cstr"] = to_opmaker_name_cstr
61
env.filters["cartesian_prod_mapping"] = cartesian_prod_mapping
J
Jiabin Yang 已提交
62
env.filters["to_composite_grad_opmaker_name"] = to_composite_grad_opmaker_name
63
env.tests["base_op"] = is_base_op
J
Jiabin Yang 已提交
64
env.tests["composite_op"] = is_composite_op
65 66 67 68 69 70 71
env.tests["vec"] = is_vec
env.tests["scalar"] = is_scalar
env.tests["initializer_list"] = is_initializer_list
env.tests["supports_inplace"] = supports_inplace
env.tests["supports_no_need_buffer"] = supports_no_need_buffer


72 73 74 75 76
def restruct_io(op):
    op["input_dict"] = to_named_dict(op["inputs"])
    op["attr_dict"] = to_named_dict(op["attrs"])
    op["output_dict"] = to_named_dict(op["outputs"])
    return op
77 78


79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
def process_scalar(op_item, scalar_configs):
    scalar_map = {
        'Scalar': 'float',
        'Scalar(float)': 'float',
        'Scalar(int)': 'int',
        'Scalar(int64_t)': 'int64_t',
    }
    if scalar_configs is not None:
        for attr_item in op_item['attrs']:
            if attr_item['name'] in scalar_configs:
                attr_type = attr_item['typename']
                assert (
                    attr_type in scalar_map
                ), f"{op_item['name']}'s scalar in op_compat.yaml is error, the data_type of {attr_item['name']} is expected to be one of Scalar, Scalar(float), Scalar(int) or Scalar(int64_t), but now is {attr_type}."

                scalar_config = scalar_configs[attr_item['name']]
                attr_item['is_support_tensor'] = (
                    True
                    if 'support_tensor' in scalar_config
                    and scalar_config['support_tensor']
                    else False
                )
                if attr_item['is_support_tensor']:
                    attr_item['typename'] = (
                        scalar_config['data_type']
                        if 'data_type' in scalar_config
                        else scalar_map[attr_type]
                    )
                else:
                    attr_item['data_type'] = (
                        scalar_config['data_type']
                        if 'data_type' in scalar_config
                        else scalar_map[attr_type]
                    )
                    attr_item['tensor_name'] = scalar_config['tensor_name']


def process_int_array(op_item, int_array_configs):
    data_type_map = {
        'int': 'std::vector<int>',
        'int64_t': 'std::vector<int64_t>',
    }
    if int_array_configs is not None:
        for attr_item in op_item['attrs']:
            if attr_item['name'] in int_array_configs:
                attr_type = attr_item['typename']
                assert (
                    attr_item['typename'] == "IntArray"
                ), f"{op_item['name']}'s int_array in op_compat.yaml is error, the data_type of {attr_item['name']} is expected to be one of IntArray, but now is {attr_type}."

                int_array_config = int_array_configs[attr_item['name']]
                attr_item['is_support_tensor'] = (
                    True
                    if 'support_tensor' in int_array_config
                    and int_array_config['support_tensor']
                    else False
                )
                if attr_item['is_support_tensor']:
                    attr_item['typename'] = (
138
                        'int[]'
139
                        if 'data_type' in int_array_config
140 141
                        and int_array_config['data_type'] == 'int'
                        else 'int64_t[]'
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
                    )
                else:
                    attr_item['data_type'] = (
                        data_type_map[int_array_config['data_type']]
                        if 'data_type' in int_array_config
                        else 'std::vector<int64_t>'
                    )
                    attr_item['manual_flag'] = True
                    if 'tensor_name' in int_array_config:
                        attr_item['tensor_name'] = int_array_config[
                            'tensor_name'
                        ]
                    if 'tensors_name' in int_array_config:
                        attr_item['tensors_name'] = int_array_config[
                            'tensors_name'
                        ]


160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
def parse_composite_info(ops, backward_ops, backward_op_dict):
    for op in ops:
        if "backward" in op:
            op["phi_backward"] = op["backward"]
    for backward_op in backward_ops:
        if "backward" in backward_op:
            backward_op["phi_backward"] = backward_op["backward"]
    for backward_op_name, op_dict in backward_op_dict.items():
        if "composite" not in op_dict:
            continue
        op_dict["composite"]["phi_inputs"] = []
        op_dict["composite"]["phi_attrs"] = []
        op_dict["composite"]["phi_outputs"] = []
        for input in op_dict["inputs"]:
            op_dict["composite"]["phi_inputs"].append(input['name'])
        for attr in op_dict["attrs"]:
            op_dict["composite"]["phi_attrs"].append(attr['name'])
        for output in op_dict["outputs"]:
            op_dict["composite"]["phi_outputs"].append(output['name'])


# replace name of op and params for OpMaker
def replace_compat_name(op_fluid_map_list, forward_op_dict, backward_op_dict):
183
    def get_phi_and_fluid_op_name(op_item):
184
        names = op_item.split('(')
185 186 187 188 189
        if len(names) == 1:
            return names[0].strip(), names[0].strip()
        else:
            return names[0].strip(), names[1].split(')')[0].strip()

190
    def update_op_param_name(op_args, args_alias_map):
191 192
        for item in op_args:
            if item['name'] in args_alias_map:
193
                item['name'] = args_alias_map[item['name']]
194

195
    def update_grad_args_name(op_args, args_alias_map):
196 197 198 199 200 201 202 203
        for item in op_args:
            if (
                item['name'].endswith('_grad')
                and item['name'][:-5] in args_alias_map
            ):
                args_alias_map[item['name']] = (
                    args_alias_map[item['name'][:-5]] + '_grad'
                )
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
                item['name'] = args_alias_map[item['name'][:-5]] + '_grad'

    def add_fluid_info_in_composite(composite_map, args_alias_map):
        fluid_input_list = []
        fluid_attr_list = []
        fluid_output_list = []
        # add fluid op inputs
        for input in composite_map["phi_inputs"]:
            if input in args_alias_map:
                fluid_input_list.append(args_alias_map[input])
            else:
                fluid_input_list.append(input)
        # add fluid op attrs
        for attr in composite_map["phi_attrs"]:
            if attr in args_alias_map:
                fluid_attr_list.append(args_alias_map[attr])
            else:
                fluid_attr_list.append(attr)
        # add fluid op outputs
        for output in composite_map["phi_outputs"]:
            if output in args_alias_map:
                fluid_output_list.append(args_alias_map[output])
            else:
                fluid_output_list.append(output)

        composite_map.update(
            {
                "fluid_inputs": fluid_input_list,
                "fluid_attrs": fluid_attr_list,
                "fluid_outputs": fluid_output_list,
            }
        )
J
Jiabin Yang 已提交
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    def get_param_list_alias(param_list, args_map):
        return [
            args_map[param] if param in args_map else param
            for param in param_list
        ]

    def update_common_params_name(
        op_item, args_name_map, scalar_configs, int_array_configs
    ):
        if 'inplace' in op_item and op_item['inplace']:
            inplace_map = {}
            for key, val in op_item['inplace'].items():
                if key in args_map:
                    key = args_map[key]
                if val in args_map:
                    val = args_map[val]
                inplace_map[key] = val
            op_item['inplace'] = inplace_map
        if 'no_need_buffer' in op_item and op_item['no_need_buffer']:
            op_item['no_need_buffer'] = get_param_list_alias(
                op_item['no_need_buffer'], args_map
            )

        process_scalar(op_item, scalar_configs)
        process_int_array(op_item, int_array_configs)

        if 'invoke' in op_item:
            op_item['invoke']['args'] = [
                args_map[param.strip()]
                if param.strip() in args_map
                else param.strip()
                for param in op_item['invoke']['args'].split(',')
            ]
            return
        op_item['infer_meta']['param'] = get_param_list_alias(
            op_item['infer_meta']['param'], args_name_map
        )
        op_item['kernel']['param'] = get_param_list_alias(
            op_item['kernel']['param'], args_name_map
        )
        if op_item['kernel']['data_type']:
            op_item['kernel']['data_type']['candidates'] = get_param_list_alias(
                op_item['kernel']['data_type']['candidates'], args_name_map
            )
        if op_item['kernel']['backend']:
            op_item['kernel']['backend']['candidates'] = get_param_list_alias(
                op_item['kernel']['backend']['candidates'], args_name_map
            )
        if op_item['kernel']['layout']:
            op_item['kernel']['layout']['candidates'] = get_param_list_alias(
                op_item['kernel']['layout']['candidates'], args_name_map
            )

290 291 292 293 294 295 296 297 298
    def update_grad_op_compat_name(grad_op_item, args_name_map):
        update_op_param_name(grad_op_item['inputs'], args_name_map)
        update_op_param_name(grad_op_item['outputs'], args_name_map)
        update_op_param_name(grad_op_item['attrs'], args_name_map)
        update_op_param_name(grad_op_item['forward']['inputs'], args_name_map)
        update_op_param_name(grad_op_item['forward']['outputs'], args_name_map)
        update_op_param_name(grad_op_item['forward']['attrs'], args_name_map)
        update_grad_args_name(grad_op_item['inputs'], args_map)
        update_grad_args_name(grad_op_item['outputs'], args_map)
299 300 301

    for op_args in op_fluid_map_list:
        new_op_name, op_name = get_phi_and_fluid_op_name(op_args['op'])
302
        if new_op_name not in forward_op_dict:
303
            continue
304 305
        forward_op_item = forward_op_dict[new_op_name]
        has_backward = True if forward_op_item['backward'] else False
306
        if has_backward:
307 308 309
            backward_op_item = backward_op_dict[forward_op_item['backward']]
        if new_op_name != op_name:
            forward_op_item['op_name'] = op_name
310

311 312 313 314 315 316
        scalar_configs = None
        int_array_configs = None
        if 'scalar' in op_args:
            scalar_configs = op_args['scalar']
        if 'int_array' in op_args:
            int_array_configs = op_args['int_array']
317 318 319 320
        if 'extra' in op_args and 'outputs' in op_args['extra']:
            for out_item in forward_op_item['outputs']:
                if out_item['name'] in op_args['extra']['outputs']:
                    out_item['is_extra'] = True
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
        key_set = ['inputs', 'attrs', 'outputs']
        args_map = {}
        for key in key_set:
            if key in op_args:
                args_map.update(op_args[key])
                for args_item in forward_op_item[key]:
                    if args_item['name'] in op_args[key]:
                        if (
                            scalar_configs
                            and args_item['name'] in scalar_configs
                        ):
                            scalar_configs[
                                op_args[key][args_item['name']]
                            ] = scalar_configs[args_item['name']]
                        if (
                            int_array_configs
                            and args_item['name'] in int_array_configs
                        ):
                            int_array_configs[
                                op_args[key][args_item['name']]
                            ] = int_array_configs[args_item['name']]
343 344 345 346 347 348
                        args_item['name'] = op_args[key][args_item['name']]
                if has_backward:
                    for args_item in backward_op_item['forward'][key]:
                        if args_item['name'] in op_args[key]:
                            args_item['name'] = op_args[key][args_item['name']]
        forward_op_item["attr_dict"] = to_named_dict(forward_op_item["attrs"])
349 350 351 352 353
        update_common_params_name(
            forward_op_item, args_map, scalar_configs, int_array_configs
        )

        if has_backward:
354
            update_grad_op_compat_name(backward_op_item, args_map)
355 356 357
            update_common_params_name(
                backward_op_item, args_map, scalar_configs, int_array_configs
            )
358 359 360
            backward_op_item["attr_dict"] = to_named_dict(
                backward_op_item["attrs"]
            )
361 362 363

            if 'backward' not in op_args:
                continue
364

365
            backward_op_list = op_args['backward'].split(',')
366 367 368 369 370 371 372 373 374 375
            # add fluid args name in composite map
            for backward_op in backward_op_list:
                if (
                    "composite"
                    in backward_op_dict[backward_op.split('(')[0].strip()]
                ):
                    add_fluid_info_in_composite(
                        backward_op_dict[backward_op]["composite"], args_map
                    )
            _, bw_op_name = get_phi_and_fluid_op_name(backward_op_list[0])
376 377
            forward_op_item['backward'] = bw_op_name
            backward_op_item['op_name'] = bw_op_name
378

379 380
            # for double grad
            if len(backward_op_list) > 1:
381
                (
382
                    phi_double_grad_op_name,
383
                    double_grad_op_name,
384 385
                ) = get_phi_and_fluid_op_name(backward_op_list[1])
                double_grad_item = backward_op_dict[phi_double_grad_op_name]
386
                backward_op_item['backward'] = double_grad_op_name
387
                double_grad_item['op_name'] = double_grad_op_name
388
                update_grad_op_compat_name(double_grad_item, args_map)
389 390 391 392 393 394
                update_common_params_name(
                    double_grad_item,
                    args_map,
                    scalar_configs,
                    int_array_configs,
                )
395 396 397
                double_grad_item["attr_dict"] = to_named_dict(
                    double_grad_item["attrs"]
                )
398

399 400 401
                # for triple grad
                if len(backward_op_list) > 2:
                    (
402
                        phi_triple_grad_op_name,
403
                        triple_grad_op_name,
404 405
                    ) = get_phi_and_fluid_op_name(backward_op_list[2])
                    triple_grad_item = backward_op_dict[phi_triple_grad_op_name]
406 407
                    double_grad_item['backward'] = triple_grad_op_name
                    triple_grad_item['op_name'] = triple_grad_op_name
408
                    update_grad_op_compat_name(triple_grad_item, args_map)
409 410 411 412 413
                    update_common_params_name(
                        triple_grad_item,
                        args_map,
                        scalar_configs,
                        int_array_configs,
414
                    )
415 416 417
                    triple_grad_item["attr_dict"] = to_named_dict(
                        triple_grad_item["attrs"]
                    )
418

419

420 421 422 423 424
def process_invoke_op(forward_op_dict, backward_op_dict):
    for bw_op in backward_op_dict.values():
        if 'invoke' in bw_op:
            invoke_op = bw_op['invoke']['func']
            args_list = bw_op['invoke']['args']
425
            args_index = 0
426 427
            if invoke_op in forward_op_dict:
                reuse_op = forward_op_dict[invoke_op]
428
                bw_op['invoke']['func'] = reuse_op['op_name']
429 430 431
                bw_op['invoke']['inputs'] = []
                bw_op['invoke']['attrs'] = []
                bw_op['invoke']['outputs'] = []
432
                for input_item in reuse_op['inputs']:
433
                    bw_op['invoke']['inputs'].append(
434 435 436 437 438
                        {
                            'name': input_item['name'],
                            'value': args_list[args_index],
                        }
                    )
439 440 441
                    args_index = args_index + 1
                for attr in reuse_op['attrs']:
                    if args_index < len(args_list):
442 443
                        attr_value = (
                            f"this->GetAttr(\"{args_list[args_index]}\")"
444
                            if args_list[args_index] in bw_op['attr_dict']
445 446
                            else args_list[args_index]
                        )
447
                        bw_op['invoke']['attrs'].append(
448
                            {'name': attr['name'], 'value': attr_value}
449
                        )
450 451 452 453
                        args_index = args_index + 1
                    else:
                        break
                for idx, output_item in enumerate(reuse_op['outputs']):
454
                    bw_op['invoke']['outputs'].append(
455 456
                        {
                            'name': output_item['name'],
457
                            'value': bw_op['outputs'][idx]['name'],
458 459 460 461
                        }
                    )


462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
def parse_drop_empty_grad(op_fluid_list: list, bw_op_dict: dict):
    for op_op in op_fluid_list:
        if 'drop_empty_grad' in op_op:
            bw_names = [
                bw_name.split('(')[0].strip()
                for bw_name in op_op['backward'].split(',')
            ]
            for bw_name in bw_names:
                assert (
                    bw_name in bw_op_dict
                ), f"backward {bw_name} is not existed"
                for out_grad in op_op['drop_empty_grad']:
                    assert (
                        out_grad in bw_op_dict[bw_name]['output_dict']
                    ), f'''
                         {bw_name} with {out_grad} is not existed in output_dict '''
                    bw_op_dict[bw_name]['output_dict'][out_grad][
                        'drop_empty_grad'
                    ] = False


483 484 485 486 487 488 489 490
def main(
    ops_yaml_path,
    backward_yaml_path,
    op_compat_yaml_path,
    op_version_yaml_path,
    output_op_path,
    output_arg_map_path,
):
491
    with open(ops_yaml_path, "rt") as f:
492 493 494
        ops = yaml.safe_load(f)
        ops = [restruct_io(op) for op in ops]
    forward_op_dict = to_named_dict(ops)
495
    with open(backward_yaml_path, "rt") as f:
496 497 498
        backward_ops = yaml.safe_load(f)
        backward_ops = [restruct_io(op) for op in backward_ops]
    backward_op_dict = to_named_dict(backward_ops)
499
    with open(op_version_yaml_path, "rt") as f:
500 501 502 503
        op_versions = yaml.safe_load(f)
    # add op version info into op
    for op_version in op_versions:
        forward_op_dict[op_version['op']]['version'] = op_version['version']
504 505

    with open(op_compat_yaml_path, "rt") as f:
506
        op_fluid_map_list = yaml.safe_load(f)
507

508 509 510 511
    for op in ops:
        op['op_name'] = op['name']
    for bw_op in backward_ops:
        bw_op['op_name'] = bw_op['name']
512 513 514 515 516
        for bw_output in bw_op['outputs']:
            bw_output['drop_empty_grad'] = True

    # deal the drop_empty_grad of bw_op by op_compat.yaml
    parse_drop_empty_grad(op_fluid_map_list, backward_op_dict)
517

518
    parse_composite_info(ops, backward_ops, backward_op_dict)
J
Jiabin Yang 已提交
519

520
    replace_compat_name(op_fluid_map_list, forward_op_dict, backward_op_dict)
521 522

    # prepare for invoke case
523
    process_invoke_op(forward_op_dict, backward_op_dict)
524

525 526 527 528 529 530 531
    # fill backward field for an op if another op claims it as forward
    for name, backward_op in backward_op_dict.items():
        forward_name = backward_op["forward"]["name"]
        if forward_name in backward_op_dict:
            forward_op = backward_op_dict[forward_name]
            if forward_op["backward"] is None:
                forward_op["backward"] = name
532

533 534 535 536
    op_dict = {}
    op_dict.update(forward_op_dict)
    op_dict.update(backward_op_dict)
    if len(ops) == 0 and len(backward_ops) == 0:
537 538 539 540 541 542 543
        if os.path.isfile(output_op_path):
            os.remove(output_op_path)
        if os.path.isfile(output_arg_map_path):
            os.remove(output_arg_map_path)
        return
    op_template = env.get_template('op.c.j2')
    with open(output_op_path, "wt") as f:
544
        msg = op_template.render(
J
Jiabin Yang 已提交
545 546 547
            ops=ops,
            backward_ops=backward_ops,
            op_dict=op_dict,
548
            composite_gen_flag=True,
549
        )
550 551 552
        f.write(msg)
    ks_template = env.get_template('ks.c.j2')
    with open(output_arg_map_path, 'wt') as f:
553
        msg = ks_template.render(ops=ops, backward_ops=backward_ops)
554 555 556 557 558
        f.write(msg)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
559
        description="Generate operator file from op yaml."
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
    )
    parser.add_argument(
        '--ops_yaml_path', type=str, help="parsed ops yaml file."
    )
    parser.add_argument(
        '--backward_yaml_path', type=str, help="parsed backward ops yaml file."
    )
    parser.add_argument(
        '--op_compat_yaml_path', type=str, help="ops args compat yaml file."
    )
    parser.add_argument(
        '--op_version_yaml_path', type=str, help="ops version yaml file."
    )
    parser.add_argument(
        "--output_op_path", type=str, help="path to save generated operators."
    )
576 577 578
    parser.add_argument(
        "--output_arg_map_path",
        type=str,
579 580
        help="path to save generated argument mapping functions.",
    )
581 582

    args = parser.parse_args()
583 584 585 586 587 588 589 590
    main(
        args.ops_yaml_path,
        args.backward_yaml_path,
        args.op_compat_yaml_path,
        args.op_version_yaml_path,
        args.output_op_path,
        args.output_arg_map_path,
    )