lookup_table_v2_op.h 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

T
tangwei12 已提交
17
#include <algorithm>
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include <string>
#include <vector>

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/math/blas.h"

#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#endif

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

constexpr int64_t kNoPadding = -1;

template <typename T>
class LookupTableV2Kernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto *output_t = context.Output<LoDTensor>("Out");  // float tensor
    auto *table_var = context.InputVar("W");

T
tangwei12 已提交
49 50
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
    int64_t ids_numel = ids_t->numel();
51

T
tangwei12 已提交
52 53
    std::vector<int64_t> ids;
    ids.reserve(ids_numel);
54

T
tangwei12 已提交
55 56 57 58
    if (ids_t->type() == framework::proto::VarType::INT32) {
      std::transform(ids_t->data<int>(), ids_t->data<int>() + ids_numel,
                     std::back_inserter(ids),
                     [&](int id) { return static_cast<int64_t>(id); });
59
    } else {
T
tangwei12 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
      framework::TensorToVector(*ids_t, &ids);
    }

    if (table_var->IsType<LoDTensor>()) {
      auto *table_t = context.Input<LoDTensor>("W");
      int64_t row_number = table_t->dims()[0];
      int64_t row_width = table_t->dims()[1];

      auto *table = table_t->data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

      for (int64_t i = 0; i < ids_numel; ++i) {
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_LT(
              ids[i], row_number,
              "Variable value (input) of OP(fluid.layers.embedding) "
              "expected >= 0 and < %ld, but got %ld. Please check input "
              "value.",
              row_number, ids[i]);
          PADDLE_ENFORCE_GE(
              ids[i], 0,
              "Variable value (input) of OP(fluid.layers.embedding) "
              "expected >= 0 and < %ld, but got %ld. Please check input "
              "value.",
              row_number, ids[i]);
          memcpy(output + i * row_width, table + ids[i] * row_width,
                 row_width * sizeof(T));
89
        }
T
tangwei12 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
      }
    } else if (table_var->IsType<SelectedRows>()) {
      const auto &table_t = table_var->Get<SelectedRows>();
      int64_t row_width = table_t.value().dims()[1];
      const auto *table = table_t.value().data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

      auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
      for (int64_t i = 0; i < ids_numel; ++i) {
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_GE(
              ids[i], 0,
              "Variable value (input) of OP(fluid.layers.embedding) "
              "expected >= 0. But received %ld",
              ids[i]);
          auto id_index = table_t.Index(ids[i]);
          PADDLE_ENFORCE_GE(id_index, 0,
                            "the input key should be exists. But received %d.",
                            id_index);
          blas.VCOPY(row_width, table + id_index * row_width,
                     output + i * row_width);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        }
      }
    }
  }
};

template <typename T>
class LookupTableV2GradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
      PADDLE_THROW(
          "The parameter W of a LookupTableV2 "
          "must be either LoDTensor or SelectedRows");
    }

    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
    bool is_sparse = context.Attr<bool>("is_sparse");
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
    if (is_sparse) {
T
tangwei12 已提交
141
      auto *ids_t = context.Input<LoDTensor>("Ids");
142 143
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
T
tangwei12 已提交
144 145 146 147
      int64_t ids_num = ids_t->numel();

      std::vector<int64_t> ids;
      ids.reserve(ids_num);
148

T
tangwei12 已提交
149 150 151 152 153 154 155
      if (ids_t->type() == framework::proto::VarType::INT32) {
        std::transform(ids_t->data<int>(), ids_t->data<int>() + ids_num,
                       std::back_inserter(ids),
                       [&](int id) { return static_cast<int64_t>(id); });
      } else {
        framework::TensorToVector(*ids_t, &ids);
      }
156

T
tangwei12 已提交
157
      d_table->set_rows(ids);
158 159 160 161 162 163 164 165 166 167 168 169

      auto *d_table_value = d_table->mutable_value();
      d_table_value->Resize({ids_num, table_dim[1]});

      d_table_value->mutable_data<T>(context.GetPlace());

      d_table->set_height(table_dim[0]);

      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table_value->data<T>();

      auto d_output_dims = d_output->dims();
170 171 172 173 174 175 176 177
      auto d_output_dims_2d =
          framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output_dims_2d,
                        "ShapeError: The shape of lookup_table@Grad and "
                        "output@Grad should be same. "
                        "But received lookup_table@Grad's shape = [%s], "
                        "output@Grad's shape = [%s].",
                        d_table_value->dims(), d_output_dims_2d);
178 179 180
      memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());

    } else {
T
tangwei12 已提交
181
      auto *ids_t = context.Input<LoDTensor>("Ids");
182 183
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
T
tangwei12 已提交
184 185 186 187 188 189 190 191 192 193 194 195
      int64_t ids_num = ids_t->numel();

      std::vector<int64_t> ids;
      ids.reserve(ids_num);

      if (ids_t->type() == framework::proto::VarType::INT32) {
        std::transform(ids_t->data<int>(), ids_t->data<int>() + ids_num,
                       std::back_inserter(ids),
                       [&](int id) { return static_cast<int64_t>(id); });
      } else {
        framework::TensorToVector(*ids_t, &ids);
      }
196

T
tangwei12 已提交
197
      auto *ids_data = ids.data();
198 199 200 201 202 203 204 205 206

      int64_t N = table_dim[0];
      int64_t D = table_dim[1];

      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());

      memset(d_table_data, 0, d_table->numel() * sizeof(T));

T
tangwei12 已提交
207
      for (int64_t i = 0; i < ids_num; ++i) {
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        if (padding_idx != kNoPadding && ids_data[i] == padding_idx) {
          // the gradient of padding_idx should be 0, already done by memset, so
          // do nothing.
        } else {
          PADDLE_ENFORCE_LT(
              ids_data[i], N,
              "Variable value (input) of OP(fluid.layers.embedding) "
              "expected >= 0 and < %ld, but got %ld. Please check input value.",
              N, ids_data[i]);
          PADDLE_ENFORCE_GE(
              ids_data[i], 0,
              "Variable value (input) of OP(fluid.layers.embedding) "
              "expected >= 0 and < %ld, but got %ld. Please check input value.",
              N, ids_data[i]);
          for (int j = 0; j < D; ++j) {
            d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
          }
        }
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle