test_fill_constant_op.py 17.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import unittest
import numpy as np
17
from op_test import OpTest, convert_float_to_uint16
18

19
import paddle
T
tangwei12 已提交
20 21
import paddle.fluid.core as core
from paddle.fluid.op import Operator
22
import paddle.fluid as fluid
23
import numpy as np
24
from paddle.fluid import compiler, Program, program_guard
T
tangwei12 已提交
25

26

L
liym27 已提交
27
# Situation 1: Attr(shape) is a list(without tensor)
28
class TestFillConstantOp1(OpTest):
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 3.8}
        self.outputs = {'Out': np.full((123, 92), 3.8)}

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp2(OpTest):
44

45 46 47 48 49 50 51 52 53 54 55 56 57
    def setUp(self):
        '''Test fill_constant op with default value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92]}
        self.outputs = {'Out': np.full((123, 92), 0.0)}

    def test_check_output(self):
        self.check_output()


58
class TestFillConstantOp3(OpTest):
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73
    def setUp(self):
        '''Test fill_constant op with specified int64 value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 10000000000}
        self.outputs = {'Out': np.full((123, 92), 10000000000)}

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp4(OpTest):
74

75 76 77 78 79 80 81 82 83 84 85 86 87
    def setUp(self):
        '''Test fill_constant op with specified int value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 3}
        self.outputs = {'Out': np.full((123, 92), 3)}

    def test_check_output(self):
        self.check_output()


88 89 90
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestFillConstantBF16Op(OpTest):
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.dtype = np.uint16
        self.inputs = {}
        self.attrs = {
            'shape': [123, 92],
            'value': 3.8,
            'dtype': core.VarDesc.VarType.BF16
        }
        self.outputs = {'Out': convert_float_to_uint16(np.full((123, 92), 3.8))}

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)


110
class TestFillConstantOpWithSelectedRows(unittest.TestCase):
111

T
tangwei12 已提交
112 113 114 115 116 117
    def check_with_place(self, place):
        scope = core.Scope()
        # create Out Variable
        out = scope.var('Out').get_selected_rows()

        # create and run fill_constant_op operator
118 119 120 121
        fill_constant_op = Operator("fill_constant",
                                    shape=[123, 92],
                                    value=3.8,
                                    Out='Out')
T
tangwei12 已提交
122 123 124
        fill_constant_op.run(scope, place)

        # get result from Out
T
tangwei12 已提交
125 126 127
        result_array = np.array(out.get_tensor())
        full_array = np.full((123, 92), 3.8, 'float32')

128
        np.testing.assert_array_equal(result_array, full_array)
T
tangwei12 已提交
129 130 131

    def test_fill_constant_with_selected_rows(self):
        places = [core.CPUPlace()]
T
tangwei12 已提交
132 133 134
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

T
tangwei12 已提交
135 136 137 138
        for place in places:
            self.check_with_place(place)


L
liym27 已提交
139 140
# Situation 2: Attr(shape) is a list(with tensor)
class TestFillConstantOp1_ShapeTensorList(OpTest):
141

L
liym27 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
            shape_tensor_list.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.attrs = {'shape': self.infer_shape, 'value': self.value}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, 92]
        self.value = 3.8

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp2_ShapeTensorList(OpTest):
166

L
liym27 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    def setUp(self):
        '''Test fill_constant op with default value
        '''
        self.op_type = "fill_constant"
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
            shape_tensor_list.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.attrs = {'shape': self.infer_shape}
        self.outputs = {'Out': np.full(self.shape, 0.0)}

    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, -1]

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp3_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
190

L
liym27 已提交
191 192 193 194 195 196 197
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.value = 10000000000


class TestFillConstantOp4_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
198

L
liym27 已提交
199 200 201 202 203 204 205 206
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.value = 3


# Situation 3: shape is a tensor
class TestFillConstantOp1_ShapeTensor(OpTest):
207

L
liym27 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {"ShapeTensor": np.array(self.shape).astype("int32")}
        self.attrs = {'value': self.value}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3.8

    def test_check_output(self):
        self.check_output()


W
wangchaochaohu 已提交
226 227
# Situation 4: value is a tensor
class TestFillConstantOp1_ValueTensor(OpTest):
228

W
wangchaochaohu 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {
            "ShapeTensor": np.array(self.shape).astype("int32"),
            'ValueTensor': np.array([self.value]).astype("float32")
        }
        self.attrs = {'value': self.value + 1.0}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3.8
        self.dtype = np.float32

    def test_check_output(self):
        self.check_output()


# Situation 5: value is a tensor
class TestFillConstantOp2_ValueTensor(OpTest):
253

W
wangchaochaohu 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {
            "ShapeTensor": np.array(self.shape).astype("int32"),
            'ValueTensor': np.array([self.value]).astype("int32")
        }
        self.attrs = {'value': self.value, 'dtype': 2}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3
        self.dtype = np.int32

    def test_check_output(self):
        self.check_output()


276
# Test python API
277
class TestFillConstantAPI(unittest.TestCase):
278

L
liym27 已提交
279
    def test_api(self):
280

281
        positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2)
282
        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
283

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        shape_tensor_int32 = fluid.data(name="shape_tensor_int32",
                                        shape=[2],
                                        dtype="int32")
        shape_tensor_int64 = fluid.data(name="shape_tensor_int64",
                                        shape=[2],
                                        dtype="int64")

        out_1 = fluid.layers.fill_constant(shape=[1, 2],
                                           dtype="float32",
                                           value=1.1)

        out_2 = fluid.layers.fill_constant(shape=[1, positive_2_int32],
                                           dtype="float32",
                                           value=1.1)

        out_3 = fluid.layers.fill_constant(shape=[1, positive_2_int64],
                                           dtype="float32",
                                           value=1.1)

        out_4 = fluid.layers.fill_constant(shape=shape_tensor_int32,
                                           dtype="float32",
                                           value=1.1)

        out_5 = fluid.layers.fill_constant(shape=shape_tensor_int64,
                                           dtype="float32",
                                           value=1.1)

        out_6 = fluid.layers.fill_constant(shape=shape_tensor_int64,
                                           dtype=np.float32,
                                           value=1.1)

        val1 = fluid.layers.fill_constant(shape=[1],
                                          dtype=np.float32,
                                          value=1.1)
        val2 = fluid.layers.fill_constant(shape=[1],
                                          dtype=np.float64,
                                          value=1.1)
        out_7 = fluid.layers.fill_constant(shape=shape_tensor_int64,
                                           dtype=np.float32,
                                           value=val1)

        out_8 = fluid.layers.fill_constant(shape=shape_tensor_int64,
                                           dtype=np.float32,
                                           value=val2)
W
wangchaochaohu 已提交
328

L
liym27 已提交
329
        exe = fluid.Executor(place=fluid.CPUPlace())
330
        res_1, res_2, res_3, res_4, res_5, res_6, res_7, res_8 = exe.run(
L
liym27 已提交
331
            fluid.default_main_program(),
332 333 334 335
            feed={
                "shape_tensor_int32": np.array([1, 2]).astype("int32"),
                "shape_tensor_int64": np.array([1, 2]).astype("int64"),
            },
336
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8])
L
liym27 已提交
337 338 339 340

        assert np.array_equal(res_1, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_2, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_3, np.full([1, 2], 1.1, dtype="float32"))
341 342
        assert np.array_equal(res_4, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_5, np.full([1, 2], 1.1, dtype="float32"))
343
        assert np.array_equal(res_6, np.full([1, 2], 1.1, dtype="float32"))
W
wangchaochaohu 已提交
344
        assert np.array_equal(res_7, np.full([1, 2], 1.1, dtype="float32"))
345 346 347 348
        assert np.array_equal(res_8, np.full([1, 2], 1.1, dtype="float32"))


class TestFillConstantImperative(unittest.TestCase):
349

350 351 352 353
    def test_api(self):
        with fluid.dygraph.guard():
            data1 = np.array([1, 2]).astype('int32')
            data2 = np.array([1.1]).astype('float32')
354
            data3 = np.array([88]).astype('int32')
355 356
            shape = fluid.dygraph.to_variable(data1)
            val = fluid.dygraph.to_variable(data2)
357
            value = fluid.dygraph.to_variable(data3)
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
            res1 = fluid.layers.fill_constant(shape=[1, 2],
                                              dtype='float32',
                                              value=1.1)
            res2 = fluid.layers.fill_constant(shape=shape,
                                              dtype='float32',
                                              value=1.1)
            res3 = fluid.layers.fill_constant(shape=shape,
                                              dtype='float32',
                                              value=val)
            res4 = fluid.layers.fill_constant(shape=shape,
                                              dtype='int32',
                                              value=value)
            assert np.array_equal(res1.numpy(),
                                  np.full([1, 2], 1.1, dtype="float32"))
            assert np.array_equal(res2.numpy(),
                                  np.full([1, 2], 1.1, dtype="float32"))
            assert np.array_equal(res3.numpy(),
                                  np.full([1, 2], 1.1, dtype="float32"))
            assert np.array_equal(res4.numpy(),
                                  np.full([1, 2], 88, dtype="int32"))
L
liym27 已提交
378

379 380 381 382 383 384 385 386 387 388
    def test_nan(self):
        with fluid.dygraph.guard():
            res = fluid.layers.fill_constant([1], 'float32', np.nan)
            self.assertTrue(np.isnan(res.numpy().item(0)))

    def test_inf(self):
        with fluid.dygraph.guard():
            res = fluid.layers.fill_constant([1], 'float32', np.inf)
            self.assertTrue(np.isinf(res.numpy().item(0)))

L
Leo Chen 已提交
389 390 391 392 393 394
    def test_ninf(self):
        with fluid.dygraph.guard():
            res = fluid.layers.fill_constant([1], 'float32', np.NINF)
            self.assertTrue(np.isinf(res.numpy().item(0)))
            self.assertEqual(np.NINF, res.numpy().item(0))

L
liym27 已提交
395

396
class TestFillConstantOpError(unittest.TestCase):
397

398 399
    def test_errors(self):
        with program_guard(Program(), Program()):
L
liym27 已提交
400
            #for ci coverage
401
            x1 = fluid.layers.data(name='x1', shape=[1], dtype="int16")
402 403 404 405 406 407 408 409 410 411 412 413
            self.assertRaises(TypeError,
                              fluid.layers.fill_constant,
                              shape=[1],
                              value=5,
                              dtype='uint4')

            self.assertRaises(TypeError,
                              fluid.layers.fill_constant,
                              shape=[1.1],
                              value=5,
                              dtype='float32',
                              out=x1)
414

415
            # The argument dtype of fill_constant_op must be one of bool, float16,
416
            #float32, float64, uint8, int16, int32 or int64
417
            x2 = fluid.layers.data(name='x2', shape=[1], dtype="int32")
L
liym27 已提交
418

419 420 421 422 423 424
            self.assertRaises(TypeError,
                              fluid.layers.fill_constant,
                              shape=[1],
                              value=5,
                              dtype='float64',
                              out=x2)
425

426
            x3 = np.random.randn(100, 100).astype('int32')
427 428 429 430 431 432
            self.assertRaises(TypeError,
                              fluid.layers.fill_constant,
                              shape=[100, 100],
                              value=5,
                              dtype='float64',
                              out=x3)
433

434
            # The argument shape's type of fill_constant_op must be list, tuple or Variable.
L
liym27 已提交
435 436 437 438 439
            def test_shape_type():
                fluid.layers.fill_constant(shape=1, dtype="float32", value=1)

            self.assertRaises(TypeError, test_shape_type)

440
            # The argument shape's size of fill_constant_op must not be 0.
L
liym27 已提交
441 442 443 444 445
            def test_shape_size():
                fluid.layers.fill_constant(shape=[], dtype="float32", value=1)

            self.assertRaises(AssertionError, test_shape_size)

446 447
            # The shape dtype of fill_constant_op must be int32 or int64.
            def test_shape_tensor_dtype():
448 449 450 451 452 453
                shape = fluid.data(name="shape_tensor",
                                   shape=[2],
                                   dtype="float32")
                fluid.layers.fill_constant(shape=shape,
                                           dtype="float32",
                                           value=1)
454 455 456 457

            self.assertRaises(TypeError, test_shape_tensor_dtype)

            def test_shape_tensor_list_dtype():
458 459 460 461 462 463
                shape = fluid.data(name="shape_tensor_list",
                                   shape=[1],
                                   dtype="bool")
                fluid.layers.fill_constant(shape=[shape, 2],
                                           dtype="float32",
                                           value=1)
464 465 466

            self.assertRaises(TypeError, test_shape_tensor_list_dtype)

467

468
class TestFillConstantOp_ValueTensorBf16(OpTest):
469

470 471 472 473 474 475 476
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {
477 478
            "ShapeTensor":
            np.array(self.shape).astype("int32"),
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
            'ValueTensor':
            convert_float_to_uint16(np.array([self.value]).astype("float32"))
        }
        self.attrs = {'value': self.value, 'dtype': core.VarDesc.VarType.BF16}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3.0
        self.dtype = np.uint16
        self.mkldnn_data_type = "bfloat16"

    def test_check_output(self):
        self.check_output_with_place(core.CPUPlace())


495
if __name__ == "__main__":
496
    paddle.enable_static()
497
    unittest.main()