test_deform_conv2d.py 20.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn.initializer as I
import numpy as np
import unittest
19
from paddle.fluid.framework import _test_eager_guard
20 21 22 23 24
from unittest import TestCase


class TestDeformConv2D(TestCase):
    batch_size = 4
25
    spatial_shape = (5, 5)
26 27 28
    dtype = "float32"

    def setUp(self):
29
        self.in_channels = 2
30 31 32 33 34
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [0, 0]
        self.stride = [1, 1]
        self.dilation = [1, 1]
35
        self.deformable_groups = 1
36 37 38 39
        self.groups = 1
        self.no_bias = True

    def prepare(self):
40 41
        np.random.seed(1)
        paddle.seed(1)
42 43 44 45 46 47 48
        if isinstance(self.kernel_size, int):
            filter_shape = (self.kernel_size, ) * 2
        else:
            filter_shape = tuple(self.kernel_size)
        self.filter_shape = filter_shape

        self.weight = np.random.uniform(
49 50
            -1, 1, (self.out_channels, self.in_channels // self.groups) +
            filter_shape).astype(self.dtype)
51
        if not self.no_bias:
52 53
            self.bias = np.random.uniform(-1, 1, (self.out_channels, )).astype(
                self.dtype)
54 55 56 57 58 59 60 61 62 63 64 65 66 67

        def out_size(in_size, pad_size, dilation_size, kernel_size,
                     stride_size):
            return (in_size + 2 * pad_size -
                    (dilation_size * (kernel_size - 1) + 1)) / stride_size + 1

        out_h = int(
            out_size(self.spatial_shape[0], self.padding[0], self.dilation[0],
                     self.kernel_size[0], self.stride[0]))
        out_w = int(
            out_size(self.spatial_shape[1], self.padding[1], self.dilation[1],
                     self.kernel_size[1], self.stride[1]))
        out_shape = (out_h, out_w)

68 69
        self.input_shape = (self.batch_size,
                            self.in_channels) + self.spatial_shape
70

71 72
        self.offset_shape = (self.batch_size, self.deformable_groups * 2 *
                             filter_shape[0] * filter_shape[1]) + out_shape
73

74 75
        self.mask_shape = (self.batch_size, self.deformable_groups *
                           filter_shape[0] * filter_shape[1]) + out_shape
76 77 78 79 80 81 82 83 84 85 86 87 88 89

        self.input = np.random.uniform(-1, 1,
                                       self.input_shape).astype(self.dtype)

        self.offset = np.random.uniform(-1, 1,
                                        self.offset_shape).astype(self.dtype)

        self.mask = np.random.uniform(-1, 1, self.mask_shape).astype(self.dtype)

    def static_graph_case_dcn(self):
        main = paddle.static.Program()
        start = paddle.static.Program()
        paddle.enable_static()
        with paddle.static.program_guard(main, start):
90 91
            x = paddle.static.data("input", (-1, self.in_channels, -1, -1),
                                   dtype=self.dtype)
92
            offset = paddle.static.data(
93 94
                "offset", (-1, self.deformable_groups * 2 *
                           self.filter_shape[0] * self.filter_shape[1], -1, -1),
95 96
                dtype=self.dtype)
            mask = paddle.static.data(
97 98
                "mask", (-1, self.deformable_groups * self.filter_shape[0] *
                         self.filter_shape[1], -1, -1),
99 100 101 102 103 104 105 106 107 108 109 110
                dtype=self.dtype)

            y_v1 = paddle.fluid.layers.deformable_conv(
                input=x,
                offset=offset,
                mask=None,
                num_filters=self.out_channels,
                filter_size=self.filter_shape,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                groups=self.groups,
111
                deformable_groups=self.deformable_groups,
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
                im2col_step=1,
                param_attr=I.Assign(self.weight),
                bias_attr=False if self.no_bias else I.Assign(self.bias),
                modulated=False)

            y_v2 = paddle.fluid.layers.deformable_conv(
                input=x,
                offset=offset,
                mask=mask,
                num_filters=self.out_channels,
                filter_size=self.filter_shape,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                groups=self.groups,
127
                deformable_groups=self.deformable_groups,
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
                im2col_step=1,
                param_attr=I.Assign(self.weight),
                bias_attr=False if self.no_bias else I.Assign(self.bias))

        exe = paddle.static.Executor(self.place)
        exe.run(start)
        out_v1, out_v2 = exe.run(main,
                                 feed={
                                     "input": self.input,
                                     "offset": self.offset,
                                     "mask": self.mask
                                 },
                                 fetch_list=[y_v1, y_v2])
        return out_v1, out_v2

    def dygraph_case_dcn(self):
        paddle.disable_static()
        x = paddle.to_tensor(self.input)
        offset = paddle.to_tensor(self.offset)
        mask = paddle.to_tensor(self.mask)

        bias = None if self.no_bias else paddle.to_tensor(self.bias)

        deform_conv2d = paddle.vision.ops.DeformConv2D(
            in_channels=self.in_channels,
            out_channels=self.out_channels,
            kernel_size=self.kernel_size,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
158
            deformable_groups=self.deformable_groups,
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
            groups=self.groups,
            weight_attr=I.Assign(self.weight),
            bias_attr=False if self.no_bias else I.Assign(self.bias))

        y_v1 = deform_conv2d(x, offset)
        y_v2 = deform_conv2d(x, offset, mask)

        out_v1 = y_v1.numpy()
        out_v2 = y_v2.numpy()

        return out_v1, out_v2

    def _test_identity(self):
        self.prepare()
        static_dcn_v1, static_dcn_v2 = self.static_graph_case_dcn()
        dy_dcn_v1, dy_dcn_v2 = self.dygraph_case_dcn()
        np.testing.assert_array_almost_equal(static_dcn_v1, dy_dcn_v1)
        np.testing.assert_array_almost_equal(static_dcn_v2, dy_dcn_v2)

    def test_identity(self):
        self.place = paddle.CPUPlace()
        self._test_identity()

        if paddle.is_compiled_with_cuda():
            self.place = paddle.CUDAPlace(0)
            self._test_identity()

186 187 188 189
    def test_identity_with_eager_guard(self):
        with _test_eager_guard():
            self.test_identity()

190 191 192

class TestDeformConv2DFunctional(TestCase):
    batch_size = 4
193
    spatial_shape = (5, 5)
194 195 196
    dtype = "float32"

    def setUp(self):
197
        self.in_channels = 2
198 199 200 201 202
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [0, 0]
        self.stride = [1, 1]
        self.dilation = [1, 1]
203
        self.deformable_groups = 1
204 205 206 207
        self.groups = 1
        self.no_bias = True

    def prepare(self):
208 209
        np.random.seed(1)
        paddle.seed(1)
210 211 212 213 214 215 216
        if isinstance(self.kernel_size, int):
            filter_shape = (self.kernel_size, ) * 2
        else:
            filter_shape = tuple(self.kernel_size)
        self.filter_shape = filter_shape

        self.weight = np.random.uniform(
217 218
            -1, 1, (self.out_channels, self.in_channels // self.groups) +
            filter_shape).astype(self.dtype)
219
        if not self.no_bias:
220 221
            self.bias = np.random.uniform(-1, 1, (self.out_channels, )).astype(
                self.dtype)
222 223 224 225 226 227 228 229 230 231 232 233 234 235

        def out_size(in_size, pad_size, dilation_size, kernel_size,
                     stride_size):
            return (in_size + 2 * pad_size -
                    (dilation_size * (kernel_size - 1) + 1)) / stride_size + 1

        out_h = int(
            out_size(self.spatial_shape[0], self.padding[0], self.dilation[0],
                     self.kernel_size[0], self.stride[0]))
        out_w = int(
            out_size(self.spatial_shape[1], self.padding[1], self.dilation[1],
                     self.kernel_size[1], self.stride[1]))
        out_shape = (out_h, out_w)

236 237
        self.input_shape = (self.batch_size,
                            self.in_channels) + self.spatial_shape
238

239 240
        self.offset_shape = (self.batch_size, self.deformable_groups * 2 *
                             filter_shape[0] * filter_shape[1]) + out_shape
241

242 243
        self.mask_shape = (self.batch_size, self.deformable_groups *
                           filter_shape[0] * filter_shape[1]) + out_shape
244 245 246 247 248 249 250 251 252 253 254 255 256 257

        self.input = np.random.uniform(-1, 1,
                                       self.input_shape).astype(self.dtype)

        self.offset = np.random.uniform(-1, 1,
                                        self.offset_shape).astype(self.dtype)

        self.mask = np.random.uniform(-1, 1, self.mask_shape).astype(self.dtype)

    def static_graph_case_dcn(self):
        main = paddle.static.Program()
        start = paddle.static.Program()
        paddle.enable_static()
        with paddle.static.program_guard(main, start):
258 259
            x = paddle.static.data("input", (-1, self.in_channels, -1, -1),
                                   dtype=self.dtype)
260
            offset = paddle.static.data(
261 262
                "offset", (-1, self.deformable_groups * 2 *
                           self.filter_shape[0] * self.filter_shape[1], -1, -1),
263 264
                dtype=self.dtype)
            mask = paddle.static.data(
265 266
                "mask", (-1, self.deformable_groups * self.filter_shape[0] *
                         self.filter_shape[1], -1, -1),
267 268 269 270 271 272 273 274 275 276 277 278
                dtype=self.dtype)

            y_v1 = paddle.fluid.layers.deformable_conv(
                input=x,
                offset=offset,
                mask=None,
                num_filters=self.out_channels,
                filter_size=self.filter_shape,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                groups=self.groups,
279
                deformable_groups=self.deformable_groups,
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
                im2col_step=1,
                param_attr=I.Assign(self.weight),
                bias_attr=False if self.no_bias else I.Assign(self.bias),
                modulated=False)

            y_v2 = paddle.fluid.layers.deformable_conv(
                input=x,
                offset=offset,
                mask=mask,
                num_filters=self.out_channels,
                filter_size=self.filter_shape,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                groups=self.groups,
295
                deformable_groups=self.deformable_groups,
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
                im2col_step=1,
                param_attr=I.Assign(self.weight),
                bias_attr=False if self.no_bias else I.Assign(self.bias))

        exe = paddle.static.Executor(self.place)
        exe.run(start)
        out_v1, out_v2 = exe.run(main,
                                 feed={
                                     "input": self.input,
                                     "offset": self.offset,
                                     "mask": self.mask
                                 },
                                 fetch_list=[y_v1, y_v2])
        return out_v1, out_v2

    def dygraph_case_dcn(self):
        paddle.disable_static()
        x = paddle.to_tensor(self.input)
        offset = paddle.to_tensor(self.offset)
        mask = paddle.to_tensor(self.mask)
        weight = paddle.to_tensor(self.weight)
        bias = None if self.no_bias else paddle.to_tensor(self.bias)

        y_v1 = paddle.vision.ops.deform_conv2d(
            x=x,
            offset=offset,
            weight=weight,
            bias=bias,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
327
            deformable_groups=self.deformable_groups,
328 329
            groups=self.groups,
        )
330 331 332 333 334 335 336 337 338 339

        y_v2 = paddle.vision.ops.deform_conv2d(
            x=x,
            offset=offset,
            mask=mask,
            weight=weight,
            bias=bias,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
340
            deformable_groups=self.deformable_groups,
341 342
            groups=self.groups,
        )
343 344 345 346 347 348 349 350 351 352 353

        out_v1 = y_v1.numpy()
        out_v2 = y_v2.numpy()

        return out_v1, out_v2

    def new_api_static_graph_case_dcn(self):
        main = paddle.static.Program()
        start = paddle.static.Program()
        paddle.enable_static()
        with paddle.static.program_guard(main, start):
354 355
            x = paddle.static.data("input", (-1, self.in_channels, -1, -1),
                                   dtype=self.dtype)
356
            offset = paddle.static.data(
357 358
                "offset", (-1, self.deformable_groups * 2 *
                           self.filter_shape[0] * self.filter_shape[1], -1, -1),
359 360
                dtype=self.dtype)
            mask = paddle.static.data(
361 362
                "mask", (-1, self.deformable_groups * self.filter_shape[0] *
                         self.filter_shape[1], -1, -1),
363 364
                dtype=self.dtype)

365 366 367
            weight = paddle.static.data("weight",
                                        list(self.weight.shape),
                                        dtype=self.dtype)
368 369 370 371 372 373 374 375 376 377 378 379

            if not self.no_bias:
                bias = paddle.static.data("bias", [-1], dtype=self.dtype)

            y_v1 = paddle.vision.ops.deform_conv2d(
                x=x,
                offset=offset,
                weight=weight,
                bias=None if self.no_bias else bias,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
380
                deformable_groups=self.deformable_groups,
381 382
                groups=self.groups,
            )
383 384 385 386 387 388 389 390 391 392

            y_v2 = paddle.vision.ops.deform_conv2d(
                x=x,
                offset=offset,
                mask=mask,
                weight=weight,
                bias=None if self.no_bias else bias,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
393
                deformable_groups=self.deformable_groups,
394 395
                groups=self.groups,
            )
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

        exe = paddle.static.Executor(self.place)
        exe.run(start)
        feed_dict = {
            "input": self.input,
            "offset": self.offset,
            "mask": self.mask,
            "weight": self.weight
        }
        if not self.no_bias:
            feed_dict["bias"] = self.bias

        out_v1, out_v2 = exe.run(main, feed=feed_dict, fetch_list=[y_v1, y_v2])
        return out_v1, out_v2

    def _test_identity(self):
        self.prepare()
        static_dcn_v1, static_dcn_v2 = self.static_graph_case_dcn()
        dy_dcn_v1, dy_dcn_v2 = self.dygraph_case_dcn()
        new_static_dcn_v1, new_static_dcn_v2 = self.new_api_static_graph_case_dcn(
        )
        np.testing.assert_array_almost_equal(static_dcn_v1, dy_dcn_v1)
        np.testing.assert_array_almost_equal(static_dcn_v2, dy_dcn_v2)
        np.testing.assert_array_almost_equal(static_dcn_v1, new_static_dcn_v1)
        np.testing.assert_array_almost_equal(static_dcn_v2, new_static_dcn_v2)

    def test_identity(self):
        self.place = paddle.CPUPlace()
        self._test_identity()

        if paddle.is_compiled_with_cuda():
            self.place = paddle.CUDAPlace(0)
            self._test_identity()

430 431 432 433
    def test_identity_with_eager_guard(self):
        with _test_eager_guard():
            self.test_identity()

434 435 436

# testcases for DeformConv2D
class TestDeformConv2DWithPadding(TestDeformConv2D):
437

438 439 440 441 442 443 444
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [2, 2]
        self.stride = [1, 1]
        self.dilation = [1, 1]
445
        self.deformable_groups = 1
446 447 448 449 450
        self.groups = 1
        self.no_bias = True


class TestDeformConv2DWithBias(TestDeformConv2D):
451

452 453 454 455 456 457 458
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [2, 2]
        self.stride = [1, 1]
        self.dilation = [1, 1]
459
        self.deformable_groups = 1
460 461 462 463 464
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DWithAsynPadding(TestDeformConv2D):
465

466 467 468 469 470 471 472
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 2]
        self.stride = [1, 1]
        self.dilation = [1, 1]
473
        self.deformable_groups = 1
474 475 476 477 478
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DWithDilation(TestDeformConv2D):
479

480 481 482 483 484 485 486
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [1, 1]
        self.dilation = [3, 3]
487
        self.deformable_groups = 1
488 489 490 491 492
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DWithStride(TestDeformConv2D):
493

494 495 496 497 498 499 500
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
501 502 503 504 505 506
        self.deformable_groups = 1
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DWithDeformable_Groups(TestDeformConv2D):
507

508 509 510 511 512 513 514 515
    def setUp(self):
        self.in_channels = 5
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [1, 1]
        self.dilation = [1, 1]
        self.deformable_groups = 5
516 517 518 519 520
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DWithGroups(TestDeformConv2D):
521

522 523 524 525 526 527 528
    def setUp(self):
        self.in_channels = 5
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [1, 1]
        self.dilation = [1, 1]
529
        self.deformable_groups = 1
530 531 532 533 534 535
        self.groups = 5
        self.no_bias = False


# testcases for deform_conv2d
class TestDeformConv2DFunctionalWithPadding(TestDeformConv2DFunctional):
536

537 538 539 540 541 542 543
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [2, 2]
        self.stride = [1, 1]
        self.dilation = [1, 1]
544
        self.deformable_groups = 1
545 546 547 548 549
        self.groups = 1
        self.no_bias = True


class TestDeformConv2DFunctionalWithBias(TestDeformConv2DFunctional):
550

551 552 553 554 555 556 557
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [2, 2]
        self.stride = [1, 1]
        self.dilation = [1, 1]
558
        self.deformable_groups = 1
559 560 561 562 563
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DFunctionalWithAsynPadding(TestDeformConv2DFunctional):
564

565 566 567 568 569 570 571
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 2]
        self.stride = [1, 1]
        self.dilation = [1, 1]
572
        self.deformable_groups = 1
573 574 575 576 577
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DFunctionalWithDilation(TestDeformConv2DFunctional):
578

579 580 581 582 583 584 585
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [1, 1]
        self.dilation = [3, 3]
586
        self.deformable_groups = 1
587 588 589 590 591
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DFunctionalWithStride(TestDeformConv2DFunctional):
592

593 594 595 596 597 598 599
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
600 601 602 603 604
        self.deformable_groups = 1
        self.groups = 1
        self.no_bias = False


605 606 607
class TestDeformConv2DFunctionalWithDeformable_Groups(TestDeformConv2DFunctional
                                                      ):

608 609 610 611 612 613 614 615
    def setUp(self):
        self.in_channels = 5
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [1, 1]
        self.dilation = [1, 1]
        self.deformable_groups = 5
616 617 618 619 620
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DFunctionalWithGroups(TestDeformConv2DFunctional):
621

622 623 624 625 626 627 628
    def setUp(self):
        self.in_channels = 5
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [1, 1]
        self.dilation = [1, 1]
629
        self.deformable_groups = 1
630 631 632 633 634 635
        self.groups = 5
        self.no_bias = False


if __name__ == "__main__":
    unittest.main()