test_adaptive_max_pool3d.py 12.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

import paddle.fluid.core as core
19
from op_test import check_out_dtype
20 21
import paddle
import paddle.fluid as fluid
22
import paddle.nn.functional as F
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75


def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


def adaptive_pool3d_forward(x,
                            output_size,
                            adaptive=True,
                            data_format='NCDHW',
                            pool_type='max'):

    N = x.shape[0]
    C, D, H, W = [x.shape[1], x.shape[2], x.shape[3], x.shape[4]] \
        if data_format == 'NCDHW' else [x.shape[4], x.shape[1], x.shape[2],x.shape[3]]

    if (isinstance(output_size, int) or output_size == None):
        H_out = output_size
        W_out = output_size
        D_out = output_size
        output_size = [D_out, H_out, W_out]
    else:
        D_out, H_out, W_out = output_size

    if output_size[0] == None:
        output_size[0] = D
        D_out = D
    if output_size[1] == None:
        output_size[1] = H
        H_out = H
    if output_size[2] == None:
        output_size[2] = W
        W_out = W

    out = np.zeros((N, C, D_out, H_out, W_out)) if data_format=='NCDHW' \
        else np.zeros((N, D_out, H_out, W_out, C))
    for k in range(D_out):
        d_start = adaptive_start_index(k, D, output_size[0])
        d_end = adaptive_end_index(k, D, output_size[0])

        for i in range(H_out):
            h_start = adaptive_start_index(i, H, output_size[1])
            h_end = adaptive_end_index(i, H, output_size[1])

            for j in range(W_out):
                w_start = adaptive_start_index(j, W, output_size[2])
                w_end = adaptive_end_index(j, W, output_size[2])

                if data_format == 'NCDHW':
76 77
                    x_masked = x[:, :, d_start:d_end, h_start:h_end,
                                 w_start:w_end]
78 79 80
                    if pool_type == 'avg':
                        field_size = (d_end - d_start) * (h_end - h_start) * (
                            w_end - w_start)
81 82
                        out[:, :, k, i,
                            j] = np.sum(x_masked, axis=(2, 3, 4)) / field_size
83 84 85 86
                    elif pool_type == 'max':
                        out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))

                elif data_format == 'NDHWC':
87 88
                    x_masked = x[:, d_start:d_end, h_start:h_end,
                                 w_start:w_end, :]
89 90 91 92 93 94 95 96 97 98
                    if pool_type == 'avg':
                        field_size = (d_end - d_start) * (h_end - h_start) * (
                            w_end - w_start)
                        out[:, k, i, j, :] = np.sum(x_masked,
                                                    axis=(1, 2, 3)) / field_size
                    elif pool_type == 'max':
                        out[:, k, i, j, :] = np.max(x_masked, axis=(1, 2, 3))
    return out


C
cnn 已提交
99
class TestAdaptiveMaxPool3DAPI(unittest.TestCase):
100

101 102
    def setUp(self):
        self.x_np = np.random.random([2, 3, 5, 7, 7]).astype("float32")
103 104 105
        self.res_1_np = adaptive_pool3d_forward(x=self.x_np,
                                                output_size=[3, 3, 3],
                                                pool_type="max")
106

107 108 109
        self.res_2_np = adaptive_pool3d_forward(x=self.x_np,
                                                output_size=5,
                                                pool_type="max")
110

111 112 113
        self.res_3_np = adaptive_pool3d_forward(x=self.x_np,
                                                output_size=[2, 3, 5],
                                                pool_type="max")
114

115 116 117 118
        self.res_4_np = adaptive_pool3d_forward(x=self.x_np,
                                                output_size=[3, 3, 3],
                                                pool_type="max",
                                                data_format="NDHWC")
119

120 121 122
        self.res_5_np = adaptive_pool3d_forward(x=self.x_np,
                                                output_size=[None, 3, None],
                                                pool_type="max")
123 124 125 126 127 128

    def test_static_graph(self):
        for use_cuda in ([False, True]
                         if core.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            paddle.enable_static()
129 130 131
            x = paddle.fluid.data(name="x",
                                  shape=[2, 3, 5, 7, 7],
                                  dtype="float32")
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

            out_1 = paddle.nn.functional.adaptive_max_pool3d(
                x=x, output_size=[3, 3, 3])

            out_2 = paddle.nn.functional.adaptive_max_pool3d(x=x, output_size=5)

            out_3 = paddle.nn.functional.adaptive_max_pool3d(
                x=x, output_size=[2, 3, 5])

            #out_4 = paddle.nn.functional.adaptive_max_pool3d(
            #    x=x, output_size=[3, 3, 3], data_format="NDHWC")

            out_5 = paddle.nn.functional.adaptive_max_pool3d(
                x=x, output_size=[None, 3, None])

            exe = paddle.static.Executor(place=place)
148 149 150 151
            [res_1, res_2, res_3,
             res_5] = exe.run(fluid.default_main_program(),
                              feed={"x": self.x_np},
                              fetch_list=[out_1, out_2, out_3, out_5])
152 153 154 155 156 157 158 159 160 161 162

            assert np.allclose(res_1, self.res_1_np)

            assert np.allclose(res_2, self.res_2_np)

            assert np.allclose(res_3, self.res_3_np)

            #assert np.allclose(res_4, self.res_4_np)

            assert np.allclose(res_5, self.res_5_np)

163
    def func_dynamic_graph(self):
164 165 166 167
        for use_cuda in ([False, True]
                         if core.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            paddle.disable_static(place=place)
Z
Zhou Wei 已提交
168
            x = paddle.to_tensor(self.x_np)
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

            out_1 = paddle.nn.functional.adaptive_max_pool3d(
                x=x, output_size=[3, 3, 3])

            out_2 = paddle.nn.functional.adaptive_max_pool3d(x=x, output_size=5)

            out_3 = paddle.nn.functional.adaptive_max_pool3d(
                x=x, output_size=[2, 3, 5])

            #out_4 = paddle.nn.functional.adaptive_max_pool3d(
            #    x=x, output_size=[3, 3, 3], data_format="NDHWC")

            out_5 = paddle.nn.functional.adaptive_max_pool3d(
                x=x, output_size=[None, 3, None])

            assert np.allclose(out_1.numpy(), self.res_1_np)

            assert np.allclose(out_2.numpy(), self.res_2_np)

            assert np.allclose(out_3.numpy(), self.res_3_np)

            #assert np.allclose(out_4.numpy(), self.res_4_np)

            assert np.allclose(out_5.numpy(), self.res_5_np)

194 195 196 197 198
    def test_dynamic_graph(self):
        with paddle.fluid.framework._test_eager_guard():
            self.func_dynamic_graph()
        self.func_dynamic_graph()

199

C
cnn 已提交
200
class TestAdaptiveMaxPool3DClassAPI(unittest.TestCase):
201

202 203
    def setUp(self):
        self.x_np = np.random.random([2, 3, 5, 7, 7]).astype("float32")
204 205 206
        self.res_1_np = adaptive_pool3d_forward(x=self.x_np,
                                                output_size=[3, 3, 3],
                                                pool_type="max")
207

208 209 210
        self.res_2_np = adaptive_pool3d_forward(x=self.x_np,
                                                output_size=5,
                                                pool_type="max")
211

212 213 214
        self.res_3_np = adaptive_pool3d_forward(x=self.x_np,
                                                output_size=[2, 3, 5],
                                                pool_type="max")
215 216 217 218 219 220 221

        # self.res_4_np = adaptive_pool3d_forward(
        #     x=self.x_np,
        #     output_size=[3, 3, 3],
        #     pool_type="max",
        #     data_format="NDHWC")

222 223 224
        self.res_5_np = adaptive_pool3d_forward(x=self.x_np,
                                                output_size=[None, 3, None],
                                                pool_type="max")
225 226 227 228 229 230

    def test_static_graph(self):
        for use_cuda in ([False, True]
                         if core.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            paddle.enable_static()
231 232 233
            x = paddle.fluid.data(name="x",
                                  shape=[2, 3, 5, 7, 7],
                                  dtype="float32")
234

C
cnn 已提交
235
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(
236 237 238
                output_size=[3, 3, 3])
            out_1 = adaptive_max_pool(x=x)

C
cnn 已提交
239
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(output_size=5)
240 241
            out_2 = adaptive_max_pool(x=x)

C
cnn 已提交
242
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(
243 244 245
                output_size=[2, 3, 5])
            out_3 = adaptive_max_pool(x=x)

C
cnn 已提交
246
            #     adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(
247 248 249
            #         output_size=[3, 3, 3], data_format="NDHWC")
            #     out_4 = adaptive_max_pool(x=x)

C
cnn 已提交
250
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(
251 252 253 254
                output_size=[None, 3, None])
            out_5 = adaptive_max_pool(x=x)

            exe = paddle.static.Executor(place=place)
255 256 257 258
            [res_1, res_2, res_3,
             res_5] = exe.run(fluid.default_main_program(),
                              feed={"x": self.x_np},
                              fetch_list=[out_1, out_2, out_3, out_5])
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

            assert np.allclose(res_1, self.res_1_np)

            assert np.allclose(res_2, self.res_2_np)

            assert np.allclose(res_3, self.res_3_np)

            #     assert np.allclose(res_4, self.res_4_np)

            assert np.allclose(res_5, self.res_5_np)

    def test_dynamic_graph(self):
        for use_cuda in ([False, True]
                         if core.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            paddle.disable_static(place=place)
Z
Zhou Wei 已提交
275
            x = paddle.to_tensor(self.x_np)
276

C
cnn 已提交
277
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(
278 279 280
                output_size=[3, 3, 3])
            out_1 = adaptive_max_pool(x=x)

C
cnn 已提交
281
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(output_size=5)
282 283
            out_2 = adaptive_max_pool(x=x)

C
cnn 已提交
284
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(
285 286 287
                output_size=[2, 3, 5])
            out_3 = adaptive_max_pool(x=x)

C
cnn 已提交
288
            #     adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(
289 290 291
            #         output_size=[3, 3, 3], data_format="NDHWC")
            #     out_4 = adaptive_max_pool(x=x)

C
cnn 已提交
292
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(
293 294 295 296 297 298 299 300 301 302 303 304 305 306
                output_size=[None, 3, None])
            out_5 = adaptive_max_pool(x=x)

            assert np.allclose(out_1.numpy(), self.res_1_np)

            assert np.allclose(out_2.numpy(), self.res_2_np)

            assert np.allclose(out_3.numpy(), self.res_3_np)

            #     assert np.allclose(out_4.numpy(), self.res_4_np)

            assert np.allclose(out_5.numpy(), self.res_5_np)


307
class TestOutDtype(unittest.TestCase):
308

309 310 311
    def test_max_pool(self):
        api_fn = F.adaptive_max_pool3d
        shape = [1, 3, 32, 32, 32]
312 313 314 315
        check_out_dtype(api_fn,
                        in_specs=[(shape, )],
                        expect_dtypes=['float32', 'float64'],
                        output_size=16)
316 317


318 319
if __name__ == '__main__':
    unittest.main()