cross_entropy.cc 4.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/cross_entropy.h"
16

W
wanghuancoder 已提交
17 18 19 20 21 22
namespace paddle {
namespace platform {
class CPUDeviceContext;
}  // namespace platform
}  // namespace paddle

23 24 25 26 27 28 29 30 31
namespace paddle {
namespace operators {
namespace math {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
template <typename T>
struct HardLabelCrossEntropyCPUFunctorImpl {
  HardLabelCrossEntropyCPUFunctorImpl(framework::Tensor* out,
                                      const framework::Tensor* prob,
                                      const framework::Tensor* labels,
                                      const int ignore_index,
                                      const int axis_dim)
      : out_(out),
        prob_(prob),
        labels_(labels),
        ignore_index_(ignore_index),
        axis_dim_(axis_dim) {}

  template <typename U>
  void apply() const {
    const int batch_size = prob_->dims()[0];
    const int num_classes = prob_->dims()[1];
    const int num_remain = num_classes / axis_dim_;

    const T* prob_data = prob_->template data<T>();
    T* loss_data = out_->template data<T>();

    const auto* label_data = labels_->template data<U>();
    for (int i = 0; i < batch_size; ++i) {
      for (int j = 0; j < num_remain; j++) {
        int lbl = static_cast<int>(label_data[i * num_remain + j]);
        if (lbl != ignore_index_) {
          PADDLE_ENFORCE_GE(lbl, 0,
                            platform::errors::OutOfRange(
                                "label value should >= 0 when label "
                                "value(%f) not equal to ignore_index(%f)",
                                lbl, ignore_index_));
          PADDLE_ENFORCE_LT(
              lbl, axis_dim_,
              platform::errors::OutOfRange(
                  "label value should less than the shape of axis dimension "
                  "when label value(%f) not equal to ignore_index(%f), But "
                  "received label value as %ld and shape of axis dimension "
                  "is %d",
                  lbl, ignore_index_, lbl, axis_dim_));
        }
        int index = i * num_classes + lbl * num_remain + j;
        int loss_idx = i * num_remain + j;
        loss_data[loss_idx] =
            lbl == ignore_index_
                ? 0
                : -math::TolerableValue<T>()(std::log(prob_data[index]));
      }
    }
  }

 private:
  framework::Tensor* out_;
  const framework::Tensor* prob_;
  const framework::Tensor* labels_;
  const int ignore_index_;
  const int axis_dim_;
};

91
template <typename T>
Q
QI JUN 已提交
92
class CrossEntropyFunctor<platform::CPUDeviceContext, T> {
93
 public:
Q
QI JUN 已提交
94
  void operator()(const platform::CPUDeviceContext& ctx, framework::Tensor* out,
Q
qijun 已提交
95
                  const framework::Tensor* prob,
96
                  const framework::Tensor* labels, const bool softLabel,
97
                  const int ignore_index, const int axis_dim) {
98
    if (softLabel) {
99 100 101 102 103
      const int batch_size = prob->dims()[0];
      const int num_classes = prob->dims()[1];
      const int num_remain = num_classes / axis_dim;

      Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
104 105 106 107
      auto in = EigenMatrix<T>::From(*prob);
      auto lbl = EigenMatrix<T>::From(*labels);
      auto loss = EigenMatrix<T>::From(*out);

Q
QI JUN 已提交
108
      loss.device(*ctx.eigen_device()) =
109
          -((lbl * in.log().unaryExpr(math::TolerableValue<T>()))
110 111
                .reshape(batch_axis_remain)
                .sum(Eigen::DSizes<int, 1>(1)));
112
    } else {
113 114 115
      HardLabelCrossEntropyCPUFunctorImpl<T> functor_impl(
          out, prob, labels, ignore_index, axis_dim);
      framework::VisitIntDataType(labels->type(), functor_impl);
116 117 118 119
    }
  }
};

Q
QI JUN 已提交
120 121
template class CrossEntropyFunctor<platform::CPUDeviceContext, float>;
template class CrossEntropyFunctor<platform::CPUDeviceContext, double>;
122 123 124
}  // namespace math
}  // namespace operators
}  // namespace paddle