program_translator.py 51.2 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import collections
16
from paddle.utils import gast
17
import inspect
18 19
import textwrap
import threading
20
import weakref
21 22

from paddle.fluid import framework
J
Jiabin Yang 已提交
23
from paddle.fluid import _non_static_mode
24
from paddle.fluid.dygraph import layers
25 26
from paddle.fluid.data_feeder import check_type
from paddle.fluid.layers.utils import flatten
27
from paddle.fluid.dygraph.base import param_guard
28
from paddle.fluid.dygraph.base import switch_to_static_graph
29 30 31
from . import error
from . import logging_utils
from .origin_info import (
32 33 34 35
    attach_origin_info,
    create_and_update_origin_info_map,
    update_op_callstack_with_origin_info,
)
36

37
from .partial_program import (
38 39
    partial_program_from,
)
40 41 42 43 44 45 46
from .utils import (
    ast_to_func,
    ast_to_source_code,
    func_to_source_code,
    input_specs_compatible,
    type_name,
    unwrap,
47 48 49
    make_hashable,
    ALREADY_D2S,
)
50
from .function_spec import (
51 52 53 54 55
    FunctionSpec,
    _hash_spec_names,
    get_buffers,
    get_parameters,
)
56

57

58
from .ast_transformer import DygraphToStaticAst
59

60
__all__ = []
61

62 63 64 65
# For each traced function, we set `max_traced_program_count` = 10 to consider caching performance.
# Once exceeding the threshold, we will raise warning to users to make sure the conversion is as expected.
MAX_TRACED_PROGRAM_COUNT = 10

66

67
class FunctionCache:
68 69 70 71 72
    """
    Caches the transformed functions to avoid redundant conversions of the same function.
    """

    def __init__(self):
73
        # Caches the converted static functions. {dygraph_func: static_func}
X
xiongkun 已提交
74
        self._converted_static_func_caches = weakref.WeakKeyDictionary()
75 76 77
        # Caches the converted ast node for same source code. {source_code: ast_root}
        self._code_to_ast_caches = dict()
        self._dygraph_to_static = DygraphToStaticAst()
78

79 80 81 82 83 84
    def convert_with_cache(self, func):
        """
        Returns the cached static function or converts it when first encounters the function.
        """
        # If hit cache, return it directly.
        static_func = self._converted_static_func_caches.get(func, None)
85 86

        if static_func is None:
87 88
            static_func = self._convert(func)
            self._converted_static_func_caches[func] = static_func
89 90 91

        return static_func

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    def _convert(self, func):
        """
        Converts dygraph function into static function. For two functions with same dedent code,
        the second function will reuse the transformed ast node of previous one.

        For example:
            # A.py
            def foo(x, y):
                z = x + y
                return z

            # B.py
            def foo(x, y):
                z = x + y
                return z

        If the conversion of A.foo happens after B.foo, it will reuse the transformed ast node of B.foo
        to speed up the conversion.
        """
        # Note: In Python2, it will raise OSError when inspect function
        # with decorator directly and function.__wrapped__ holds the actual function.
113
        func = unwrap(func)
114
        source_code = func_to_source_code(func)
115 116 117 118 119

        # TODO(liym27):
        #  Consider this case: source_code in self._code_to_ast_caches,
        #  but actually they are methods in different classes.
        #  Maybe use (__class__, source_code) as key
120 121 122 123
        if source_code in self._code_to_ast_caches:
            root_wrapper = self._code_to_ast_caches[source_code]
        else:
            root = gast.parse(source_code)
124
            root = attach_origin_info(root, func)
125 126
            root_wrapper = self._dygraph_to_static.get_static_ast(root)
            self._code_to_ast_caches[source_code] = root_wrapper
127

128 129
        # Get static function from AST
        static_func, file_name = ast_to_func(root_wrapper.node, func)
130 131

        create_and_update_origin_info_map(root_wrapper.node, static_func)
132
        return static_func
133 134

    def exist(self, func):
135
        return func in self._converted_static_func_caches
136 137


138 139 140 141
_CACHE_LOCK = threading.Lock()
_FUNCTION_CACHE = FunctionCache()


142
def convert_to_static(function):
143
    """
144
    Transforms function of dygraph into static function using the cache mechanism.
145 146 147

    Args:
        function(callable): The function with dygraph layers that will be converted into static layers.
148
    """
149 150
    if getattr(function, ALREADY_D2S, None):
        return function
151
    with _CACHE_LOCK:
152
        static_func = _FUNCTION_CACHE.convert_with_cache(function)
153
        setattr(static_func, ALREADY_D2S, True)
154 155 156
        return static_func


157
class CacheKey:
158 159 160
    """
    Cached key for ProgramCache.
    """
161

162
    __slots__ = [
163 164 165 166 167 168
        'function_spec',
        'input_args_with_spec',
        'input_kwargs_with_spec',
        'class_instance',
        'kwargs',
        '_spec_names_id',
169
    ]
170

171 172 173 174 175 176 177 178
    def __init__(
        self,
        function_spec,
        input_args_with_spec,
        input_kwargs_with_spec,
        class_instance,
        **kwargs
    ):
179 180
        """
        Initializes a cache key.
181

182 183
        Args:
            functions_spec(FunctionSpec): a FunctionSpec instance of decorated function.
184 185
            input_args_with_spec(list[InputSpec]): actual input args with some arguments replaced by InputSpec.
            input_kwargs_with_spec(list[{string:InputSpec}]): actual input kwargs with some arguments replaced by InputSpec.
186
            class_instance(object): a instance of class `Layer`.
187
            **kwargs(dict): manage other arguments used for better scalability
188
        """
189
        self.function_spec = function_spec
190 191
        self.input_args_with_spec = input_args_with_spec
        self.input_kwargs_with_spec = input_kwargs_with_spec
192
        self.class_instance = class_instance
193 194
        # NOTE: `kwargs` is usually not considered as basic member for `__hash__`
        self.kwargs = kwargs
195 196 197
        self._spec_names_id = _hash_spec_names(
            input_args_with_spec, input_kwargs_with_spec
        )
198 199 200

    @classmethod
    def from_func_and_args(cls, function_spec, args, kwargs, class_instance):
201
        """
202 203 204 205 206 207 208 209 210 211 212
        Generated a CacheKey instance by given inputs.

        Args:
            functions_spec(FunctionSpec): a FunctionSpec instance of decorated function.
            args(tuple): tuple of actual inputs arguments.
            kwargs(dict): dict of actual inputs keyword arguments.
            class_instance(object): a instance of class `Layer`.
        """
        # 1. filter `self` in args
        if args and isinstance(args[0], layers.Layer):
            args = args[1:]
213
        # 2. convert tensor and numpy array into InputSpec
214
        _args, _kwargs = function_spec.unified_args_and_kwargs(args, kwargs)
215 216 217 218
        (
            input_args_with_spec,
            input_kwargs_with_spec,
        ) = function_spec.args_to_input_spec(_args, _kwargs)
219 220

        # 3. check whether hit the cache or build a new program for the input arguments
221 222 223 224 225 226
        return CacheKey(
            function_spec,
            input_args_with_spec,
            input_kwargs_with_spec,
            class_instance,
        )
227 228 229

    def __hash__(self):
        error_msg = "Arguments to a `@paddle.jit.to_static` must be a hashable Python objects (or nested structures of these types)."
230
        with_hook = self.kwargs.get("with_hook", False)
231
        is_train = self.kwargs.get("is_train", False)
232 233 234 235 236 237 238 239 240 241 242
        return hash(
            (
                id(self.function_spec),
                make_hashable(self.input_args_with_spec, error_msg),
                make_hashable(self.input_kwargs_with_spec, error_msg),
                self._spec_names_id,
                self.class_instance,
                with_hook,
                is_train,
            )
        )
243 244 245 246 247 248 249 250

    def __eq__(self, other):
        return (type(self) is type(other)) and hash(self) == hash(other)

    def __neq__(self, other):
        return not self == other

    def __repr__(self):
251
        return "id(function_spec): {}, input_args_with_spec: {}, input_kwargs_with_spec: {}, class_instance: {}".format(
252 253 254 255 256
            id(self.function_spec),
            self.input_args_with_spec,
            self.input_kwargs_with_spec,
            self.class_instance,
        )
257 258 259 260 261 262 263 264 265


def unwrap_decorators(func):
    """
    Unwraps a decorated function and returns the decorator list and inner target.
    """
    decorators = []
    cur = func
    while True:
266
        if isinstance(cur, StaticFunction):
267 268 269 270 271
            decorators.append(cur)
            # Note: if `cur` is a method, keep it as bound method of class.
            instance = cur._class_instance
            if instance is not None:
                cur = cur.dygraph_function.__get__(instance)
272
            else:
273 274 275 276
                cur = cur.dygraph_function
        else:
            break
    return decorators, cur
277

278

279
class StaticFunction:
280 281 282 283 284
    """
    Wrapper class to Manage program conversion of decorated function.

    """

285
    def __init__(self, function, input_spec=None, **kwargs):
286
        """
287
        Initializes a `StaticFunction`.
288 289 290 291

        Args:
            function(callable): A function or method that will be converted into static program.
            input_spec(list[InputSpec]): list of InputSpec to specify the `shape/dtype/name` information for each input argument, default None.
292
            **kwargs(dict): other arguments like `build_strategy` et.al.
293 294
        """
        # save the instance `self` while decorating a method of class.
295

296 297 298
        if inspect.ismethod(function):
            self._dygraph_function = getattr(function, '__func__')
            self._class_instance = getattr(function, '__self__')
299

300 301 302
            if not hasattr(self._class_instance, '_original_funcs'):
                raise TypeError(
                    "When using 'to_static' to convert method of a class, "
303 304
                    "please ensure the class inherits from nn.Layer"
                )
305
            self._class_instance._original_funcs[
306 307
                function.__name__
            ] = self._dygraph_function
308 309 310 311 312 313 314
        else:
            self._dygraph_function = function
            self._class_instance = None

        self._input_spec = input_spec
        self._function_spec = FunctionSpec(function, input_spec)
        self._program_cache = ProgramCache()
315
        self._descriptor_cache = weakref.WeakKeyDictionary()
316
        # Note: Hold a reference to ProgramTranslator for switching `enable_to_static`.
317
        self._program_trans = ProgramTranslator()
318
        self._kwargs = kwargs
319
        self._training = True
320 321
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
322

323 324 325 326 327 328 329
        self._property = kwargs.get("property", False)

    @property
    def is_property(self):
        # whether is class proproty to be exported.
        return self._property

330
    def train(self):
331 332
        if (
            isinstance(self._class_instance, layers.Layer)
333
            and self._class_instance.training is False
334
        ):
335 336 337
            raise RuntimeError(
                "Failed to switch train mode. {} is a Layer's method, "
                "please use Layer.train() to switch train mode.".format(
338 339 340
                    self.dygraph_function
                )
            )
341 342 343
        self._training = True

    def eval(self):
344 345
        if (
            isinstance(self._class_instance, layers.Layer)
346
            and self._class_instance.training is True
347
        ):
348 349 350
            raise RuntimeError(
                "Failed to switch eval mode. {} is a Layer's method, "
                "please use Layer.eval() to switch eval mode.".format(
351 352 353
                    self.dygraph_function
                )
            )
354
        self._training = False
355 356 357 358 359 360

    def __get__(self, instance, owner):
        """
        Overrides this method to parse the class instance and call bound method correctly.

        For example:
361

362 363 364 365
            '''
            class Net(Layer):
                def __init__(self):
                    pass
366

367 368 369 370 371 372 373
                @paddle.jit.to_static
                def forward(self, x, y):
                    return x + y

            net = Net()
            out = net(x, y)
            '''
374

375 376
        In above case, `net(x, y)` will call `net.forward(x, y)` firstly that is a bound method
        of `Net` instance. After decorated by `@paddle.jit.to_static`, it will firstly to call `__get__`
377
        to parse the class instance correctly instead of the `StaticFunction` instance.
378
        """
379 380 381
        if instance not in self._descriptor_cache:
            if instance is None:
                return self
382
            # Note(Aurelius84): To construct new instance of StaticFunction when we
383 384 385 386 387 388 389 390
            # first encouter the bound function of layer and cache it.
            new_static_layer = self._clone()
            new_static_layer._class_instance = instance
            self._descriptor_cache[instance] = new_static_layer

        return self._descriptor_cache[instance]

    def _clone(self):
391 392 393
        return self.__class__(
            self._dygraph_function, self._input_spec, **self._kwargs
        )
394 395

    def __call__(self, *args, **kwargs):
396
        """
397 398 399 400
        Supports to call the returned instance with input `args` and `kwargs` directly.

        Args:
            *args(tuple): tuple of all input arguments from original decorated function.
401
            **kwargs(dict): dict of all input keyward arguments from original decorated function.
402 403 404

        Return:
            Outputs of decorated function.
405
        """
406 407
        if self._property:
            return self._call_dygraph_function(*args, **kwargs)
408

409
        # 1. call dygraph function directly if not enable `declarative`
410
        if not self._program_trans.enable_to_static:
411 412 413 414
            # NOTE(liym27):
            # Here calls `warnings.warn` but not `logging_utils.warn` because by default warnings.warn(message)
            # will show up **only once**. StaticFunction.__call__ will run many times, it is appropriate to
            # display this warning message only once.
415
            logging_utils.warn(
416 417
                "The decorator '@paddle.jit.to_static' does NOT work when setting ProgramTranslator.enable to False. "
                "We will just return dygraph output. If you would like to get static graph output, please call API "
418 419
                "ProgramTranslator.enable(True)"
            )
420 421
            return self._call_dygraph_function(*args, **kwargs)

J
Jiabin Yang 已提交
422
        if not _non_static_mode():
423 424
            raise RuntimeError(
                "Failed to run the callable object {} decorated by '@paddle.jit.to_static', "
425
                "because it is NOT in dynamic mode. Please disable the static mode to enter dynamic mode with the "
426
                "following API: paddle.disable_static().".format(
427 428 429
                    self.dygraph_function
                )
            )
430

431 432
        # 2. trace ops from dygraph layers and cache the generated program.
        args, kwargs = self._function_spec.unified_args_and_kwargs(args, kwargs)
433

434 435
        try:
            concrete_program, partial_program_layer = self.get_concrete_program(
436 437
                *args, **kwargs, is_train=self._is_train_mode()
            )
438 439 440
            # 3. synchronize self.training attribute.
            if isinstance(self._class_instance, layers.Layer):
                partial_program_layer.training = self._class_instance.training
441 442
            else:
                partial_program_layer.training = self._training
443

444 445 446
            partial_program_layer._cuda_graph_capture_mode = (
                self._cuda_graph_capture_mode
            )
447 448
            partial_program_layer._cuda_graph_pool_id = self._cuda_graph_pool_id

449
            # 4. return outputs.
450 451 452 453 454 455 456
            try:
                return partial_program_layer(args)
            except Exception as e:
                if not hasattr(e, error.ERROR_DATA):
                    # runtime error
                    error.attach_error_data(e, in_runtime=True)
                    raise
457
        except Exception as e:
458
            error_data = getattr(e, error.ERROR_DATA, None)
459
            if error_data:
460
                error_data.raise_new_exception()
461
            else:
462 463
                logging_utils.warn(
                    "Please file an issue at 'https://github.com/PaddlePaddle/Paddle/issues'"
464 465
                    " if you can't handle this {} yourself.".format(type(e))
                )
466
                raise e
467

468 469
    def _is_train_mode(self):
        if self._class_instance is not None:
470 471 472
            if not hasattr(self._class_instance, 'training'):
                raise TypeError(
                    "When using 'to_static' to convert method of a class, "
473 474
                    "please ensure the class inherits from nn.Layer"
                )
475 476 477 478
            return self._class_instance.training
        else:
            return self._training

479 480 481 482 483 484
    def _call_dygraph_function(self, *args, **kwargs):
        """
        Calls dygraph function directly and returns the outputs.

        Args:
            *args(tuple): tuple of all input arguments from original decorated function.
485
            **kwargs(dict): dict of all input keyward arguments from original decorated function.
486 487 488 489 490 491

        Return:
            Outputs of dygraph function.
        """
        if self._class_instance is not None:
            dygraph_function = self._dygraph_function.__get__(
492 493
                self._class_instance
            )
494 495 496 497 498
        else:
            dygraph_function = self._dygraph_function

        return dygraph_function(*args, **kwargs)

499 500 501 502 503 504 505 506 507
    def _raise_when_property(self):
        """raise RuntimeError when property=True

        Raises:
            RuntimeError: can not call this func when property=True
        """
        if self.is_property:
            raise RuntimeError("Can not call the func when property=True.")

508 509 510 511 512 513 514 515 516 517 518
    def get_concrete_program(self, *args, **kwargs):
        """
        Returns traced concrete program and inner executable partial layer.

        Args:
            *args(tuple): input arguments values or InputSpec
            **kwargs(dict) : input kwargs values.

        Returns:
            Traced ConcreteProgram and executable translated Layer.
        """
519
        self._raise_when_property()
520

521
        with_hook = kwargs.get("with_hook", False)
522
        is_train = kwargs.get("is_train", True)
523 524 525 526
        if "is_train" in kwargs:
            kwargs.pop("is_train")
        if "with_hook" in kwargs:
            kwargs.pop("with_hook")
527 528
        # 1. unify args/kwargs and replace Tensor with InputSpec
        if len(args) != len(self._function_spec.args_name):
529
            args, kwargs = self._function_spec.unified_args_and_kwargs(
530 531 532 533 534 535
                args, kwargs
            )
        (
            input_args_with_spec,
            input_kwargs_with_spec,
        ) = self._function_spec.args_to_input_spec(args, kwargs)
536 537

        # 2. generate cache key
538 539 540 541 542 543 544 545 546
        cache_key = CacheKey(
            self._function_spec,
            input_args_with_spec,
            input_kwargs_with_spec,
            self._class_instance,
            **self._kwargs,
            with_hook=with_hook,
            is_train=is_train
        )
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

        # 3. check whether hit the cache or build a new program for the input arguments
        concrete_program, partial_program_layer = self._program_cache[cache_key]
        return concrete_program, partial_program_layer

    def get_traced_count(self):
        """
        Returns the number of traced programs for the decorated function.
        """
        return len(self._program_cache)

    @property
    def code(self):
        """
        Returns the source code of transformed static function for debugging.
        """
        static_func = convert_to_static(self._dygraph_function)
        source_code = func_to_source_code(static_func)
        return source_code

    @property
    def dygraph_function(self):
        """
        Returns the original decorated function.
        """
        return self._dygraph_function

    @property
    def concrete_program(self):
        """
        Returns recent ConcreteProgram instance of decorated function.
A
Aurelius84 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590

        Examples:
            .. code-block:: python

                import paddle
                from paddle.jit import to_static
                from paddle.static import InputSpec

                paddle.disable_static()

                def foo(x, y):
                    z = x + y
                    return z
591

A
Aurelius84 已提交
592 593 594 595 596 597 598 599
                # usage 1:
                decorated_foo = to_static(foo, input_spec=[InputSpec([10], name='x'), InputSpec([10], name='y')])
                print(decorated_foo.concrete_program)

                # usage 2:
                decorated_foo = to_static(foo)
                out_foo = decorated_foo(paddle.rand([10]), paddle.rand([10]))
                print(decorated_foo.concrete_program)
600
        """
601 602
        return self.concrete_program_specify_input_spec(input_spec=None)

603 604 605
    def concrete_program_specify_input_spec(
        self, input_spec=None, with_hook=False
    ):
606 607 608
        """
        Returns recent ConcreteProgram instance of decorated function while
        specifying input_spec. If the self._function_spec already has
609
        input_spec, it will check the compatibility of input input_spec and
610 611 612 613 614 615 616
        the self._function_spec.input_spec. If input input_spec=None, then
        this method uses self._function_spec.input_spec

        args:
            input_spec (list[InputSpec], optional): Describes the input of
                the translate function.
        """
617
        self._raise_when_property()
618 619 620 621 622
        # if specific the `input_spec`, the length of program_cache will always 1,
        # else, return the last one.
        cached_program_len = len(self._program_cache)
        # If specific `input_spec`, apply convertion from dygraph layers into static Program.
        if cached_program_len == 0:
C
Chen Weihang 已提交
623 624 625
            desired_input_spec = input_spec
            if self._function_spec.input_spec is not None:
                if input_spec is not None and not input_specs_compatible(
626 627
                    flatten(input_spec), flatten(self._function_spec.input_spec)
                ):
628
                    raise ValueError(
629 630 631 632
                        "The `input_spec`: {} used to construct concrete_program is conflict with the `input_spec`: {} in `@paddle.jit.to_static`".format(
                            input_spec, self._function_spec.input_spec
                        )
                    )
C
Chen Weihang 已提交
633 634 635
                # NOTE(chenweihang): we should always translated program based on the `input_spec`
                # decorated on forward if it is valid
                desired_input_spec = self._function_spec.input_spec
636 637
                if input_spec is not None:
                    logging_utils.warn(
638 639 640 641
                        "\n\nYou have specified `input_spec` both in function definition (higher priority) and `paddle.jit.save` (will be ignored.)\n\n\t Using: {}\n\n\t Ignore: {}\n".format(
                            desired_input_spec, input_spec
                        )
                    )
642

643
            has_input_spec = desired_input_spec is not None
A
Aurelius84 已提交
644
            if has_input_spec:
C
Chen Weihang 已提交
645
                concrete_program, _ = self.get_concrete_program(
646 647
                    *desired_input_spec,
                    with_hook=with_hook,
648 649
                    is_train=self._is_train_mode()
                )
650
                return concrete_program
651
            else:
A
Aurelius84 已提交
652
                raise ValueError(
653 654 655 656
                    "No valid transformed program for {}.\n\t    Please specific `input_spec` in `@paddle.jit.to_static` or feed input tensor to call the decorated function at once.\n".format(
                        self._function_spec
                    )
                )
657 658 659 660 661 662
        elif with_hook:
            cache_key = self._program_cache._recent_cache_key
            cache_key.kwargs["with_hook"] = True
            concrete_program, _ = self._program_cache[cache_key]
            return concrete_program

663 664
        # If more than one programs have been cached, return the recent converted program by default.
        elif cached_program_len > 1:
665
            logging_utils.warn(
666 667 668 669
                "Current {} has more than one cached programs: {}, the last traced progam will be return by default.".format(
                    self._function_spec, cached_program_len
                )
            )
670

671 672 673 674
        cache_key, (
            concrete_program,
            partial_layer,
        ) = self._program_cache.last()
675
        return concrete_program
676

677 678 679
    def rollback(self):
        """
        Rollback into original dygraph functions for current class instance.
680

681 682 683 684 685 686 687 688 689 690
        Returns:
            Function or Method

        Example::
            .. code-block:: python

                import paddle

                class Net(paddle.nn.Layer):
                    def __init__(self):
691
                        super().__init__()
692 693 694 695 696 697 698 699 700 701 702

                    def forward(self, x, flag=True):
                        if flag:
                            out = x + 1
                        else:
                            out = x - 1
                        return out

                x = paddle.randn([10, 1], 'float32')
                net = paddle.jit.to_static(Net())  # convert into static mode
                out = net(x)
703

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
                net.forward.rollback()  # rollback into dygraph mode
                out = net(x)
        """

        def rollback_impl(class_instance):
            for name, func in class_instance._original_funcs.items():
                setattr(class_instance, name, func.__get__(class_instance))

            for sublayer in class_instance.sublayers(include_self=False):
                rollback_impl(sublayer)

        if self._class_instance is None:
            return self._dygraph_function

        # only rollback sub-functions on path of top _dygraph_function
        func_name = self._dygraph_function.__name__
720 721 722 723 724
        assert (
            func_name in self._class_instance._original_funcs
        ), "Not Found function '{}' in class '{}'.".format(
            func_name, self._class_instance.__name__
        )
725
        func = self._class_instance._original_funcs[func_name]
726 727 728
        setattr(
            self._class_instance, func_name, func.__get__(self._class_instance)
        )
729 730 731 732 733 734

        for sublayer in self._class_instance.sublayers(include_self=False):
            rollback_impl(sublayer)

        return getattr(self._class_instance, func_name)

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
    def __deepcopy__(self, memo):
        """
        Customized behavior for copy.deepcopy, return original decorated function instead
        of a new StaticFunction Object. StaticFunction itself is not copyable becuase it's
        associated with class_instance.

        We add __deepcopy__ here only for the following usage:

        Example::
            .. code-block:: python

                import copy
                import paddle

                class Net(paddle.nn.Layer):
                    def __init__(self):
751
                        super().__init__()
752 753 754 755 756 757 758 759 760 761 762 763

                    def forward(self, x, flag=True):
                        if flag:
                            out = x + 1
                        else:
                            out = x - 1
                        return out

                x = paddle.randn([10, 1], 'float32')
                net = paddle.jit.to_static(Net())  # convert into static mode

                copy_net = copy.deepcopy(net)      # deepcopy a new net without @to_static
764

765 766 767 768 769 770
        Please attention that original 'net' will unwrap @to_static and rollback into simple Layer.
        """
        if self._class_instance is not None:
            net_name = type(self._class_instance).__name__
            logging_utils.log(
                level=-1,
771 772 773 774 775
                msg="Not recommend to deepcopy '{}' decorated with @to_static, it has side effect that will"
                " rollback into original state before @to_static. Please deepcopy '{}' before applying @to_static.".format(
                    net_name, net_name
                ),
            )
776
            self.rollback()
777 778 779
            return self._dygraph_function.__get__(
                memo[id(self._class_instance)]
            )
780 781 782
        else:
            return self._dygraph_function

783 784 785 786 787
    @property
    def inputs(self):
        """
        Returns input tensors of recent converted static program.
        """
788
        self._raise_when_property()
789 790
        concrete_program = self.concrete_program
        inputs = [
791 792
            var
            for var in flatten(concrete_program.inputs)
793 794 795
            if isinstance(var, framework.Variable)
        ]
        return inputs
796

797
    @property
798 799 800 801
    def outputs(self):
        """
        Returns output tensors of recent converted static program.
        """
802
        self._raise_when_property()
803 804
        concrete_program = self.concrete_program
        outputs = [
805 806
            var
            for var in flatten(concrete_program.outputs)
807 808 809 810
            if isinstance(var, framework.Variable)
        ]

        return outputs
811

812
    @property
813 814 815 816
    def main_program(self):
        """
        Returns recent converted static main program.
        """
817
        self._raise_when_property()
818 819 820
        concrete_program = self.concrete_program
        main_program = concrete_program.main_program
        return main_program
821

822 823 824
    @property
    def program_cache(self):
        return self._program_cache
825

826 827 828
    @property
    def function_spec(self):
        return self._function_spec
829 830


831 832 833 834 835 836 837 838 839 840
def _verify_init_in_dynamic_mode(class_instance):
    """
    Verifies the instance is initialized in dynamic mode.
    """
    if isinstance(class_instance, layers.Layer):
        if not class_instance._init_in_dynamic_mode:
            raise RuntimeError(
                " `paddle.jit.to_static` is only available in dynamic mode. Please call `paddle.disable_static()` before "
                "initializing your Layer class `{}` . Because parameters of Layer class should be initialized firstly "
                "in dynamic mode while applying transformation.".format(
841 842 843
                    class_instance
                )
            )
844 845


846
class HookHelper:
847 848 849 850 851 852 853 854 855
    """
    Only For converting pre/post hooks operation in outermost layer while jit.save.
    Because hooks in sublayer have been processed automatically.
    """

    def __init__(self, func, class_instance, with_hook=False):
        self.func = func
        self.class_instance = class_instance
        self.with_hook = with_hook
856 857 858 859 860
        self.need_apply_hook = (
            with_hook
            and isinstance(self.class_instance, layers.Layer)
            and getattr(func, "__name__") == "forward"
        )
861 862 863 864 865

    def apply_pre_hooks(self, inputs):
        """
        Apply _forward_pre_hooks from outermost layer
        """
866 867
        if not self.need_apply_hook:
            return inputs
868 869 870 871 872 873

        inputs = inputs[1:]
        for forward_pre_hook in self.class_instance._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self.class_instance, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
874
                    hook_result = (hook_result,)
875 876 877 878 879 880 881 882
                inputs = hook_result

        return [self.class_instance] + list(inputs)

    def apply_post_hooks(self, inputs, outputs):
        """
        Apply _forward_post_hooks from outermost layer
        """
883 884
        if not self.need_apply_hook:
            return outputs
885 886

        inputs = inputs[1:]
887 888 889 890 891 892
        for (
            forward_post_hook
        ) in self.class_instance._forward_post_hooks.values():
            hook_result = forward_post_hook(
                self.class_instance, inputs, outputs
            )
893 894 895 896 897 898 899
            if hook_result is not None:
                outputs = hook_result

        inputs.insert(0, self.class_instance)
        return outputs


900
class ConcreteProgram:
901 902

    __slots__ = [
903 904 905 906 907 908 909
        'inputs',
        'outputs',
        'main_program',
        "startup_program",
        "parameters",
        "function",
        'kwargs',
910 911
    ]

912 913 914 915 916 917 918 919 920 921
    def __init__(
        self,
        inputs,
        outputs,
        parameters,
        function,
        main_program,
        startup_program=None,
        **kwargs
    ):
922 923 924
        self.inputs = inputs
        self.outputs = outputs
        self.main_program = main_program
925
        self.startup_program = startup_program
926
        self.parameters = parameters
927
        self.function = function
928
        self.kwargs = kwargs
929 930 931

    @staticmethod
    @switch_to_static_graph
932 933 934
    def from_func_spec(
        func_spec, input_spec, input_kwargs_spec, class_instance, **kwargs
    ):
935
        """
936 937
        Builds the main_program with specialized inputs and returns outputs
        of program as fetch_list.
938 939 940

        Args:
            func_spec(FunctionSpec): A FunctionSpec instance for decorated function.
941
            input_spec(list[InputSpec]):
942
        """
943 944 945
        # verify the instance is initialized in imperative mode.
        _verify_init_in_dynamic_mode(class_instance)

946
        # Transforms dygraph function into static function and caches it.
947
        dygraph_function = func_spec.dygraph_function
948
        static_func = convert_to_static(dygraph_function)
949
        # apply pre\post hook for outermost layer
950 951 952
        hook_helper = HookHelper(
            dygraph_function, class_instance, kwargs.get("with_hook", False)
        )
953

954 955
        main_program, startup_program = framework.Program(), framework.Program()
        # Note: The random seed should be synchronized into cached program
956
        # if set in `fluid.dygraph_guard` because some ops rely on it, such as
957
        # `fluid.layers.dropout`.
958
        main_program.random_seed = framework.default_main_program().random_seed
959 960 961
        startup_program.random_seed = (
            framework.default_startup_program().random_seed
        )
962

963
        from paddle.fluid.dygraph.base import _switch_declarative_mode_guard_
964

965
        with framework.program_guard(main_program, startup_program):
966 967
            with _switch_declarative_mode_guard_(is_declarative=True):
                # 1. Adds `fluid.data` layers for input if needed
968
                static_inputs = func_spec.to_static_inputs_with_spec(
969 970
                    input_spec, main_program
                )
971
                _kwargs = func_spec.to_static_inputs_with_spec(
972 973
                    input_kwargs_spec, main_program
                )
974
                if class_instance:
975 976 977
                    static_inputs = tuple(
                        [class_instance] + list(static_inputs)
                    )
978

979
                # 2. Gets all ParamBases and buffered VarBases in the function
980
                all_parameters_and_buffers = _extract_indeed_params_buffers(
981 982
                    class_instance
                )
983 984

                # 3. Builds program only once and returns the output Variables.
985 986 987
                with param_guard(
                    get_parameters(class_instance, False)
                ), param_guard(get_buffers(class_instance, False)):
988
                    try:
989 990
                        # only for jit.save, do nothing while train and eval process
                        inputs = hook_helper.apply_pre_hooks(static_inputs)
991 992
                        if _kwargs:
                            outputs = static_func(*inputs, **_kwargs)
993 994
                        else:
                            outputs = static_func(*inputs)
995
                        outputs = hook_helper.apply_post_hooks(inputs, outputs)
996 997
                    except BaseException as e:
                        # NOTE: If e is raised in compile time, e should be attached to ERROR_DATA here.
998
                        error.attach_error_data(e)
999 1000 1001
                        error_data = getattr(e, error.ERROR_DATA, None)
                        if error_data:
                            error_data.raise_new_exception()
1002 1003
                        raise

1004
                if outputs is not None:
1005 1006 1007 1008
                    need_wrap_into_list = (
                        not isinstance(outputs, (tuple, list))
                        or len(outputs) == 1
                    )
1009 1010
                    if need_wrap_into_list:
                        outputs = [outputs]
1011

1012 1013
        main_program = update_op_callstack_with_origin_info(main_program)

1014 1015 1016 1017 1018 1019 1020 1021 1022
        return ConcreteProgram(
            inputs=static_inputs,
            outputs=outputs,
            parameters=all_parameters_and_buffers,
            function=dygraph_function,
            main_program=main_program,
            startup_program=startup_program,
            **kwargs
        )
1023 1024


1025 1026 1027 1028 1029 1030
def _extract_indeed_params_buffers(class_instance):
    """
    To filter not initialzed buffers.
    """
    params = list(get_parameters(class_instance).values())
    buffers = list(get_buffers(class_instance).values())
1031
    buffers = [buffer for buffer in buffers if len(buffer.shape) != 0]
1032 1033 1034 1035

    return params + buffers


1036
class ProgramCache:
1037 1038 1039
    """
    Wrapper class for the program functions defined by dygraph function.
    """
1040

1041
    def __init__(self):
1042
        # {hash_id : (concrete_program, partial_layer)}
1043
        self._caches = collections.OrderedDict()
1044
        # trace mostly recent used program
1045
        self._recent_key = None
1046
        self._recent_cache_key = None
1047

1048 1049 1050
    def _build_once(self, cache_key):
        concrete_program = ConcreteProgram.from_func_spec(
            func_spec=cache_key.function_spec,
1051 1052
            input_spec=cache_key.input_args_with_spec,
            input_kwargs_spec=cache_key.input_kwargs_with_spec,
1053
            class_instance=cache_key.class_instance,
1054 1055
            **cache_key.kwargs
        )
1056
        return concrete_program, partial_program_from(concrete_program)
1057

1058
    def __getitem__(self, item):
1059
        if not isinstance(item, CacheKey):
1060 1061 1062 1063
            raise ValueError(
                'type(item) should be CacheKey, but received %s'
                % type_name(item)
            )
1064
        item_id = hash(item)
1065
        self._recent_cache_key = item
1066
        self._recent_key = item_id
1067 1068
        if item_id not in self._caches:
            self._caches[item_id] = self._build_once(item)
1069 1070 1071
            # Note: raise warnings if number of traced program is more than `max_tracing_count`
            current_tracing_count = len(self._caches)
            if current_tracing_count > MAX_TRACED_PROGRAM_COUNT:
1072
                logging_utils.warn(
1073
                    "Current traced program number: {} > `max_tracing_count`:{}. Too much cached programs will bring expensive overhead. "
1074 1075 1076 1077
                    "The reason may be: (1) passing tensors with different shapes, (2) passing python objects instead of tensors.".format(
                        current_tracing_count, MAX_TRACED_PROGRAM_COUNT
                    )
                )
1078

1079
        return self._caches[item_id]
1080

1081
    def get_program(self, item):
1082
        if not isinstance(item, CacheKey):
1083
            raise ValueError(
1084 1085 1086
                "Input item's type should be FunctionSpec, but received %s"
                % type_name(item)
            )
1087 1088
        item_id = hash(item)
        if item_id not in self._caches:
1089
            raise RuntimeError(
1090
                "Failed to find program for input item, please decorate input function by `@paddle.jit.to_static`."
1091
            )
1092
        return self._caches[item_id]
1093

1094
    def last(self):
1095 1096 1097
        assert (
            len(self._caches) >= 1
        ), "No valid cached program in ProgramCache."
1098 1099
        assert self._recent_key is not None
        return self._recent_key, self._caches[self._recent_key]
1100

1101 1102 1103 1104
    def __len__(self):
        return len(self._caches)

    def concrete_programs(self):
1105
        return [cp for key, (cp, _) in self._caches.items()]
1106

1107

1108 1109
def synchronized(func):
    func.__lock__ = threading.Lock()
1110

1111 1112 1113
    def lock_func(*args, **kwargs):
        with func.__lock__:
            return func(*args, **kwargs)
1114

1115
    return lock_func
1116 1117


1118
class ProgramTranslator:
1119
    """
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
    Class to translate dygraph function into static graph function. The object
    of this class is a singleton.

    Args:
        None.

    Returns:
        ProgramTranslator: the singleton object.

    Examples:
        .. code-block:: python

1132
            import paddle
1133

1134 1135 1136
            # Two methods get same object because ProgramTranslator is a singleton
            paddle.jit.ProgramTranslator()
            paddle.jit.ProgramTranslator.get_instance()
1137

1138 1139
    """

1140
    _singleton_lock = threading.Lock()
1141 1142 1143 1144 1145 1146
    _instance = None

    @synchronized
    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = object.__new__(cls, *args, **kwargs)
1147
            cls._instance._initialized = False
1148 1149 1150 1151 1152
        return cls._instance

    @classmethod
    def get_instance(cls):
        if cls._instance is None:
1153 1154
            with cls._singleton_lock:
                cls._instance = cls()
1155 1156 1157 1158 1159
        return cls._instance

    @classmethod
    def reset(cls):
        if cls._instance is not None:
1160
            cls._instance._initialized = False
1161 1162
            cls._instance.__init__()

1163
    def __init__(self):
1164
        # To make sure that calls __init__ only once.
1165
        if self._initialized:
1166
            return
1167 1168
        self._initialized = True
        self._program_cache = ProgramCache()
1169
        self.enable_to_static = True
1170

1171
    def enable(self, enable_to_static):
1172
        """
1173
        Enable or disable the converting from imperative to static graph by
1174 1175 1176
        ProgramTranslator globally.

        Args:
1177
            enable_to_static (bool): True or False to enable or disable converting to static.
1178 1179 1180 1181 1182 1183 1184

        Returns:
            None.

        Examples:
            .. code-block:: python

1185
                import paddle
1186 1187


1188 1189 1190 1191 1192 1193 1194
                @paddle.jit.to_static
                def func(x):
                    if paddle.mean(x) > 0:
                        x_v = x - 1
                    else:
                        x_v = x + 1
                    return x_v
1195

1196 1197 1198 1199 1200 1201

                prog_trans = paddle.jit.ProgramTranslator()
                prog_trans.enable(False)

                x = paddle.ones([1, 2])
                # ProgramTranslator is disabled so the func is run in dygraph
1202
                print(func(x))  # [[0. 0.]]
L
liym27 已提交
1203

1204
        """
1205 1206 1207 1208 1209 1210
        check_type(
            enable_to_static,
            "enable_to_static",
            bool,
            "ProgramTranslator.enable",
        )
1211
        self.enable_to_static = enable_to_static
1212

1213 1214
    def get_output(self, dygraph_func, *args, **kwargs):
        """
1215
        Returns the output dygraph Tensor for dygraph function. The dygraph
1216
        function will be translated into static graph function so the under
1217
        beneath numerical result will be calculated by static graph mode.
1218 1219 1220

        Args:
            dygraph_func (callable): the dygraph function.
1221 1222
            *args (tuple): the input argument of dygraph_func.
            **kwargs (dict): the input argument of dygraph_func.
1223 1224

        Returns:
1225
            Tensor or tuple of Tensors: the dygraph Tensor containing digital result.
1226 1227 1228 1229

        Examples:
            .. code-block:: python

1230 1231
                import paddle

1232 1233

                def func(x):
1234
                    if paddle.mean(x) > 0:
1235 1236 1237 1238 1239 1240
                        x_v = x - 1
                    else:
                        x_v = x + 1
                    return x_v


1241 1242 1243 1244
                prog_trans = paddle.jit.ProgramTranslator()

                x = paddle.ones([1, 2])
                x_v = prog_trans.get_output(func, x)
1245
                print(x_v)  # [[0. 0.]]
1246

1247
        """
1248 1249 1250
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_output"
1251

1252
        if not self.enable_to_static:
1253 1254
            # Here calls `warnings.warn` but not `logging_utils.warn` because by default warnings.warn(message)
            # will show up **only once**.
1255
            logging_utils.warn(
1256 1257 1258 1259
                "The ProgramTranslator.get_output doesn't work when setting ProgramTranslator.enable to False. "
                "We will just return dygraph output. "
                "Please call ProgramTranslator.enable(True) if you would like to get static output."
            )
1260
            return dygraph_func(*args, **kwargs)
1261
        try:
1262
            function_spec = FunctionSpec(dygraph_func)
1263
            cache_key = CacheKey.from_func_and_args(
1264 1265 1266 1267 1268
                function_spec,
                args,
                kwargs,
                getattr(dygraph_func, '__self__', None),
            )
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
            _, partial_program_layer = self._program_cache[cache_key]

            if args and isinstance(args[0], layers.Layer):
                # Synchronize self.training attribute.
                partial_program_layer.training = args[0].training
                args = args[1:]
            try:
                return partial_program_layer(args)
            except BaseException as e:
                # NOTE:
                # 1. If e is raised in compile time, e should have been attached to ERROR_DATA before;
                # 2. If e raised in runtime, e should be attached to ERROR_DATA here.
                if not hasattr(e, error.ERROR_DATA):
                    # runtime error
                    error.attach_error_data(e, in_runtime=True)
                raise
1285
        except BaseException as e:
1286 1287 1288 1289 1290 1291
            error_data = getattr(e, error.ERROR_DATA, None)
            if error_data:
                error_data.raise_new_exception()
            else:
                logging_utils.warn(
                    "Please file an issue at 'https://github.com/PaddlePaddle/Paddle/issues'"
1292 1293
                    " if you can't handle this {} yourself.".format(type(e))
                )
1294
                raise e
1295 1296 1297

    def get_func(self, dygraph_func):
        """
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
        Returns a callable function which converts imperative dygraph APIs of
        the input dygraph_func into declarative net-building APIs, which means
        it doesn't return immediate digital result as get_output does.
        Users should handle Program and Executor by themselves.

        Args:
            dygraph_func (callable): the dygraph function.

        Returns:
            callable: converting imperative dygraph APIs into declarative
            net-building APIs.
1309 1310 1311 1312

        Examples:
            .. code-block:: python

1313 1314
                import paddle

1315 1316

                def func(x):
1317
                    if paddle.mean(x) > 0:
1318 1319 1320 1321 1322 1323
                        x_v = x - 1
                    else:
                        x_v = x + 1
                    return x_v


1324
                prog_trans = paddle.jit.ProgramTranslator()
1325 1326 1327
                static_func = prog_trans.get_func(func)
                print(callable(static_func)) # True

1328
        """
1329 1330 1331
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_func"
1332

1333
        if not self.enable_to_static:
1334
            logging_utils.warn(
1335 1336 1337
                "The ProgramTranslator.get_func doesn't work when setting ProgramTranslator.enable to False. We will "
                "just return dygraph output. Please call ProgramTranslator.enable(True) if you would like to get static output."
            )
1338
            return dygraph_func
1339

1340
        static_func = convert_to_static(dygraph_func)
1341 1342
        return static_func

1343 1344
    def get_program(self, dygraph_func, *args, **kwargs):
        """
1345
        Returns the translated static program and input/output Tensors from
1346 1347 1348 1349
        dygraph function. The users can use the program to run by executor.

        Args:
            dygraph_func (callable): the dygraph function.
1350 1351
            *args (tuple): the input argument of dygraph_func.
            **kwargs (dict): the input argument of dygraph_func.
1352 1353 1354

        Returns:
            tuple of (main_program, startup_program, inputs, outputs) whose
1355
            types are (Program, Program, list of Tensors, list of Tensors).
1356 1357
            main_program: the converted main program.
            startup_program: the converted startup program.
1358 1359
            inputs: list of input Tensors which need to be fed.
            outputs: list of output Tensors which users can fetch.
1360 1361 1362 1363

        Examples:
            .. code-block:: python

1364 1365
                import paddle

1366 1367

                def func(x):
1368
                    if paddle.mean(x) > 0:
1369 1370 1371 1372 1373 1374
                        x_v = x - 1
                    else:
                        x_v = x + 1
                    return x_v


1375 1376
                prog_trans = paddle.jit.ProgramTranslator()
                x = paddle.ones([1, 2])
1377 1378
                main_prog, start_prog, inputs, outputs = prog_trans.get_program(func, x)
                print([i.name for i in inputs])
1379
                # [u'generated_tensor_0'] the feed input Tensor name representing x
1380
                print([o.name for o in outputs])
1381
                # [u'_generated_var_4'] the fetch output Tensor name representing x_v
1382

1383
        """
1384 1385 1386
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_program"
1387

1388
        if not self.enable_to_static:
1389
            logging_utils.warn(
1390 1391 1392 1393
                "The ProgramTranslator.get_program doesn't work when setting ProgramTranslator.enable to False."
                "We will just return dygraph output. "
                "Please call ProgramTranslator.enable(True) if you would like to get static output."
            )
1394
            return dygraph_func(*args, **kwargs)
1395

1396
        function_spec = FunctionSpec(dygraph_func)
1397
        cache_key = CacheKey.from_func_and_args(
1398 1399
            function_spec, args, kwargs, getattr(dygraph_func, '__self__', None)
        )
1400 1401
        concrete_program, partial_program_layer = self._program_cache[cache_key]

1402 1403
        # Note: concrete_program hold all input/output infos include non-Variable
        input_vars = [
1404 1405
            var
            for var in concrete_program.inputs
1406 1407 1408
            if isinstance(var, framework.Variable)
        ]
        output_vars = [
1409 1410
            var
            for var in concrete_program.outputs
1411 1412 1413
            if isinstance(var, framework.Variable)
        ]

1414 1415 1416 1417 1418 1419
        return (
            concrete_program.main_program,
            concrete_program.startup_program,
            input_vars,
            output_vars,
        )
1420

1421 1422
    def get_code(self, dygraph_func):
        """
1423 1424 1425 1426 1427 1428
        Returns the translated static function string code from dygraph function.

        Args:
            dygraph_func (callable): the dygraph function.

        Returns:
1429 1430 1431 1432 1433
            str: the string code of translated static function.

        Examples:
            .. code-block:: python

1434 1435 1436 1437 1438 1439 1440 1441 1442
                import paddle


                def func(x):
                    if paddle.mean(x) > 0:
                        x_v = x - 1
                    else:
                        x_v = x + 1
                    return x_v
1443 1444


1445
                prog_trans = paddle.jit.ProgramTranslator()
1446

1447 1448
                code = prog_trans.get_code(func)
                print(type(code)) # <class 'str'>
1449

1450
        """
1451 1452 1453
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_code"
1454
        # Gets AST from dygraph function
1455 1456 1457

        unwrap_func = unwrap(dygraph_func)
        raw_code = inspect.getsource(unwrap_func)
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
        code = textwrap.dedent(raw_code)
        root = gast.parse(code)

        # Transform AST
        dygraph_to_static = DygraphToStaticAst()
        root_wrapper = dygraph_to_static.get_static_ast(root)

        # Get source_code
        source_code = ast_to_source_code(root_wrapper.node)
        return source_code

1469
    def get_program_cache(self):
1470
        """
1471 1472 1473 1474 1475 1476 1477 1478 1479
        Returns the ProgramCache instance. This method is used by PaddlePaddle
        developers to manage program cache in ProgramTranslator. Normal users
        don't have to call this method.

        Returns:
            ProgramCache: ProgramCache instance of ProgramTranslator.

        Examples:
            .. code-block:: python
1480

1481
                import paddle
1482

1483
                prog_trans = paddle.jit.ProgramTranslator()
1484 1485
                prog_cache = prog_trans.get_program_cache()

1486
        """
1487
        return self._program_cache