auto_parallel_recompute.py 21.2 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19 20 21
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging

from .pass_base import PassBase, register_pass
from paddle.fluid import core, unique_name
from paddle.fluid import framework as framework
from paddle.fluid.backward import _append_grad_suffix_, _get_no_grad_set_name
from paddle.fluid.backward import ProgramStats, _rename_arg_, _find_op_path_
22 23 24 25 26 27 28 29 30 31
from paddle.distributed.auto_parallel.dist_attribute import (
    OperatorDistributedAttribute,
)
from paddle.distributed.auto_parallel.utils import (
    get_loss_op,
    set_var_dist_attr,
    set_dist_op_desc_original_id,
)
from paddle.distributed.auto_parallel.utils import (
    naive_set_dist_op_attr_for_program_by_mesh_and_mapping,
32
    insert_dependencies_for_two_ops,
33
)
34 35


36 37 38 39 40 41
def _to_be_recomputed(op):
    return op.has_attr('op_namescope') and "/auto_parallel/rc_" in op.attr(
        'op_namescope'
    )


42 43
class RecomputeState(ProgramStats):
    def __init__(self, block, ops):
44
        super().__init__(block=block, ops=ops)
45 46
        self._block = block
        self._ops = ops
47
        # {varname: {as_input_ops: op_idx, as_output_ops: op_idx}}
48
        self.var_op_deps = {}
49 50
        # {segment_name: op_idx}
        self.seg_op_deps = {}
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

    def build_stats(self):
        for i, op in enumerate(self._ops):
            for name in op.desc.input_arg_names():
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for name in op.desc.output_arg_names():
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
            if not _to_be_recomputed(op):
                continue

            seg_name = op.attr('op_namescope')
            if seg_name not in self.seg_op_deps:
                self.seg_op_deps[seg_name] = [i]
            else:
                assert (
                    self.seg_op_deps[seg_name][-1] + 1 == i
                ), "The recompute segment's ops should be continuous"
                self.seg_op_deps[seg_name].extend([i])

    def get_recompute_segments(
        self, checkpoints_list=None, no_recompute_segments=[]
    ):
        """get recompute segments and checkpoints"""
86
        segments = []
87 88 89 90 91 92
        checkpoints = checkpoints_list or []

        if len(checkpoints) == 0:
            # the segments is marked by `auto.recompute()` api
            for segment_idx in self.seg_op_deps.values():
                if len(segment_idx) == 1:
93
                    continue
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
                segments.append([segment_idx[0], segment_idx[-1] + 1])
                checkpoints.extend(self._ops[segment_idx[-1]].output_arg_names)
        else:
            # the segments is marked by `strategy.checkpoints` api
            start_idx = -1
            pre_segment_end_idx = -1
            while start_idx + 1 < len(checkpoints):
                if start_idx == -1:
                    ckpt_name = checkpoints[start_idx + 1]
                    if ckpt_name not in self.var_op_deps:
                        start_idx += 1
                        continue
                    op_idx_list = self.var_op_deps[ckpt_name][
                        "var_as_output_ops"
                    ]
                    if op_idx_list:
                        segments.append([0, max(op_idx_list) + 1])
111
                else:
112 113
                    flag, min_idx, max_idx = self.is_subgraph(
                        [checkpoints[start_idx]], [checkpoints[start_idx + 1]]
114
                    )
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
                    if flag:
                        min_idx = self._update_segment_start(
                            min_idx, pre_segment_end_idx
                        )
                        segments.append([min_idx, max_idx + 1])
                    else:
                        logging.info(
                            "Could not recompute op range [{}] - [{}] ".format(
                                min_idx, max_idx + 1
                            )
                        )
                start_idx += 1

        if no_recompute_segments:
            for i in reversed(sorted(no_recompute_segments)):
                assert i < len(
                    segments
                ), "the no_recompute_segments idx [{}] should be lower the number of segment [{}]".format(
                    i, len(segments)
                )
                segments.pop(i)
136 137 138

        for i, (idx1, idx2) in enumerate(segments):
            logging.info("recompute segment[{}]".format(i))
139 140 141 142 143 144 145 146 147 148 149 150 151 152
            logging.info(
                "segment start op: [{}]: [{}] [{}]".format(
                    self._ops[idx1].desc.type(),
                    self._ops[idx1].desc.input_arg_names(),
                    self._ops[idx1].desc.output_arg_names(),
                )
            )
            logging.info(
                "segment end op: [{}]: [{}] [{}]".format(
                    self._ops[idx2 - 1].desc.type(),
                    self._ops[idx2 - 1].desc.input_arg_names(),
                    self._ops[idx2 - 1].desc.output_arg_names(),
                )
            )
153

154 155 156 157
        return segments, checkpoints

    def is_recompute(self):
        return any([_to_be_recomputed(op) for op in self._ops])
158 159 160

    def modify_forward_desc_for_recompute(self, dist_context):
        """
161
        If program's foward part has 'dropout' op, this function will insert
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        a seed op before it to guarantee that two dropout op have the same outputs.
        """
        op_types = [op.desc.type() for op in self._ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
        while op_idx < len(self._ops):
            cur_op = self._ops[op_idx]
            if "grad" in cur_op.type:
                break
            if cur_op.type != "dropout":
                op_idx += 1
                continue
            if cur_op.input("Seed") is not None and len(cur_op.input("Seed")):
                op_idx += 1
                continue

            cur_op_dist_attr = dist_context.get_op_dist_attr_for_program(cur_op)
            # insert seed op to guarantee that two dropout op have the same outputs
            op_unique_name = unique_name.generate("seed")
183 184 185
            var_unique_name = unique_name.generate_with_ignorable_key(
                ".".join([op_unique_name, 'tmp'])
            )
186 187 188 189 190
            seed_var = self._block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
191 192
                stop_gradient=False,
            )
193 194 195 196

            # set new seed_var's dist_attr
            ref_dims_mapping = [-1]
            ref_process_mesh = cur_op_dist_attr.process_mesh
197 198 199 200 201 202 203 204 205
            seed_var_dist_attr = set_var_dist_attr(
                dist_context, seed_var, ref_dims_mapping, ref_process_mesh
            )

            seed = (
                0
                if cur_op.attr("fix_seed") is False
                else int(cur_op.attr("seed"))
            )
206 207 208 209 210
            seed_op = self._block._insert_op_without_sync(
                index=cur_op.idx,
                type="seed",
                inputs={},
                outputs={"Out": seed_var},
211 212
                attrs={"seed": seed, "force_cpu": True},
            )
213
            seed_op._set_attr('op_namescope', cur_op.attr('op_namescope'))
214 215
            # set new seed op's dist_attr
            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
216 217
                seed_op, ref_process_mesh, ref_dims_mapping, dist_context
            )
218 219 220 221

            # modify dropout op's desc
            self._ops.insert(op_idx, seed_op)
            cur_op.desc.set_input("Seed", [var_unique_name])
222 223
            cur_op._remove_attr("fix_seed")
            cur_op._remove_attr("seed")
224 225 226
            cur_op_dist_attr.set_input_dist_attr(
                seed_var.name, seed_var_dist_attr
            )
227 228
            op_idx += 2

229 230
        self._block._sync_with_cpp()

231 232 233 234 235 236 237 238 239

def _find_op_index(block, cur_op):
    for idx in range(block.desc.op_size()):
        if cur_op.desc == block.desc.op(idx):
            return idx
    return -1


def _get_stop_gradients(program, no_grad_set):
240
    """get no grad var"""
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    if no_grad_set is None:
        no_grad_set = set()
    else:
        no_grad_set = _get_no_grad_set_name(no_grad_set)

    no_grad_set_name = set()
    for var in program.list_vars():
        if "@GRAD" in var.name:
            break
        if var.stop_gradient:
            no_grad_set_name.add(_append_grad_suffix_(var.name))
    no_grad_set_name.update(list(map(_append_grad_suffix_, no_grad_set)))
    return no_grad_set_name


256 257 258
def _add_needed_descs_to_block(
    descs, block, main_block, in_memory_vars, dist_context
):
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    """
    Get the recomputed ops which will insert the backward part
    """
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            set_dist_op_desc_original_id(new_op_desc, desc, dist_context)
            new_op_desc._set_attr(op_role_attr_name, backward)
            result_descs.append(new_op_desc)
    return result_descs


@register_pass("auto_parallel_recompute")
class RecomputePass(PassBase):
    def __init__(self):
290
        super().__init__()
291 292 293 294
        self.set_attr("checkpoints", None)
        self.set_attr("loss", None)
        self.set_attr("dist_context", None)
        self.set_attr("no_grad_set", None)
295
        self.set_attr("no_recompute_segments", [])
296 297 298 299 300 301 302 303 304 305 306

    def _check_self(self):
        if self.get_attr("dist_context") is None:
            return False
        if self.get_attr("loss") is None:
            return False
        return True

    def _check_conflict(self, other_pass):
        return True

307
    def _apply_single_impl(self, main_program, startup_program, context):
308
        checkpoints = self.get_attr("checkpoints")
309
        no_recompute_segments = self.get_attr("no_recompute_segments")
310 311 312 313
        loss = self.get_attr("loss")
        no_grad_set = self.get_attr("no_grad_set")
        self._dist_context = self.get_attr("dist_context")

314
        # 0. get op_path which is related to loss
315 316
        main_block = main_program.global_block()
        no_grad_set_name = _get_stop_gradients(main_program, no_grad_set)
317 318
        op_path = _find_op_path_(main_block, [loss], [], no_grad_set_name)

319
        # 1. build recompute state
320
        rc_state = RecomputeState(main_block, op_path)
321 322 323 324
        if not rc_state.is_recompute() and not checkpoints:
            return

        # 2. get the segments to be recomputed
325 326
        rc_state.modify_forward_desc_for_recompute(self._dist_context)
        rc_state.build_stats()
327 328 329 330 331
        checkpoints = rc_state.sort_checkpoints(checkpoints or [])
        segments, checkpoints = rc_state.get_recompute_segments(
            checkpoints, no_recompute_segments
        )
        if segments == [] or checkpoints == []:
332 333
            return

334
        # 3. get vars that should be hold in memory
335 336 337
        vars_should_be_hold = []
        for segment in segments:
            vars_should_be_hold.extend(
338 339
                rc_state.get_out_of_subgraph_vars(segment[0], segment[1])
            )
340
        cross_vars = set(vars_should_be_hold) - set(checkpoints)
341 342 343
        logging.info(
            "found [{}] vars which cross recompute segment: [{}],"
            "better checkpoints might be set to reduce those vars".format(
344 345 346
                len(cross_vars), cross_vars
            )
        )
347 348 349 350 351
        vars_should_be_hold.extend(rc_state.get_reserved_vars())
        vars_should_be_hold.extend(rc_state.get_input_nodes())
        vars_should_be_hold = list(set(vars_should_be_hold))
        vars_in_memory = vars_should_be_hold + checkpoints

352 353 354
        # 4. get the fwd ops desc to be recomputed.
        var_name_dict = {}  # varname --> varname.subprog_XXX
        ckpt_ops_dict = {}  # ckpt_op_id --> segment_descs
355 356
        buffer_block = main_block.program._create_block()
        for i, segment in enumerate(segments[::-1]):
357
            fwd_ops = op_path[segment[0] : segment[1]]
358 359 360 361 362
            var_suffix = ".subprog_%d" % i
            for op in fwd_ops:
                input_and_output_names = []
                input_and_output_names.extend(op.desc.input_arg_names())
                input_and_output_names.extend(op.desc.output_arg_names())
363 364 365
                cur_op_dist_attr = (
                    self._dist_context.get_op_dist_attr_for_program(op)
                )
366 367 368 369 370 371 372 373 374
                assert cur_op_dist_attr is not None
                for name in input_and_output_names:
                    if main_block.var(name).persistable or name in checkpoints:
                        continue
                    if name in vars_should_be_hold:
                        continue
                    if name not in var_name_dict:
                        ref_process_mesh = cur_op_dist_attr.process_mesh
                        if name in op.desc.input_arg_names():
375 376 377
                            ref_dims_mapping = (
                                cur_op_dist_attr.get_input_dims_mapping(name)
                            )
378
                        else:
379 380 381
                            ref_dims_mapping = (
                                cur_op_dist_attr.get_output_dims_mapping(name)
                            )
382 383 384 385 386 387 388 389 390 391
                        # record recomputed var's old_name and new_name (old_name.subprog_XXX)
                        # create new var with new name
                        var_name_dict[name] = name + var_suffix
                        ref_var = main_block.var(name)
                        rc_var = main_block.create_var(
                            name=var_name_dict[name],
                            shape=ref_var.shape,
                            dtype=ref_var.dtype,
                            type=ref_var.type,
                            persistable=ref_var.persistable,
392 393
                            stop_gradient=ref_var.stop_gradient,
                        )
394
                        # set new recomputed var's dist attr
395 396 397 398 399 400
                        set_var_dist_attr(
                            self._dist_context,
                            rc_var,
                            ref_dims_mapping,
                            ref_process_mesh,
                        )
401
            # get recomputed segment's descs
402 403 404 405 406 407 408
            segment_descs = _add_needed_descs_to_block(
                fwd_ops,
                buffer_block,
                main_block,
                vars_in_memory,
                self._dist_context,
            )
409 410 411 412 413
            # rename recomputed ops' input and output var name
            for key in var_name_dict:
                _rename_arg_(segment_descs, key, var_name_dict[key])

            # NOTE: one forward op could be correspond to multiple xxx_grad op.
414
            # When traversing all grad_ops in reverse, need to set a flag to indicate
415 416
            # whether the ckpt and its segment_descs can be used.
            ckpt_op = op_path[segment[1] - 1]
417
            ckpt_ops_dict[ckpt_op.desc.original_id()] = [True, segment_descs]
418

419
        # 5. insert recomputed fwd ops into backward parse
420 421 422 423 424 425 426 427 428 429 430
        ops = main_block.ops
        loss_op = get_loss_op(main_block)
        loss_op_idx = _find_op_index(main_block, loss_op)
        dist_op_context = self._dist_context.dist_op_context
        assert loss_op_idx != -1
        # Traversing all grad_ops in reverse, and if the fwd op corresponding to reverse op is checkpoints,
        # segments ops should be inserted.
        for i in range(len(ops) - 1, loss_op_idx, -1):
            grad_op = ops[i]
            # remove some attrs of dropout_grad op's desc
            if grad_op.type == "dropout_grad":
431 432
                grad_op._remove_attr("fix_seed")
                grad_op._remove_attr("seed")
433 434 435

            # rename grad op's var_name which is not in 'vars_in_memory'
            for key in var_name_dict:
436 437 438 439
                if (
                    key
                    not in grad_op.input_arg_names + grad_op.output_arg_names
                ):
440
                    continue
441 442 443 444
                self.reset_op_dist_attr(grad_op, var_name_dict)
                _rename_arg_([grad_op.desc], key, var_name_dict[key])

            # insert recomputed ops
445 446 447
            original_id = grad_op.desc.original_id()
            if original_id in dist_op_context.grad_op_id_to_op_id:
                fwd_op_id = dist_op_context.grad_op_id_to_op_id[original_id]
448 449 450 451 452
                if fwd_op_id in ckpt_ops_dict and ckpt_ops_dict[fwd_op_id][0]:
                    idx = grad_op.idx
                    while idx - 1 >= 0 and ops[idx - 1].type == "sum":
                        idx -= 1
                    segment_descs = ckpt_ops_dict[fwd_op_id][1]
453
                    rc_op = None
454
                    for _, op_desc in reversed(list(enumerate(segment_descs))):
455 456 457
                        rc_op = main_block._insert_op_without_sync(
                            idx, type='nop'
                        )
458
                        rc_desc = rc_op.desc
459
                        rc_desc.copy_from(op_desc)
460
                        rc_desc.set_original_id(rc_desc.id())
461 462
                        # set recomputed ops' dist attr
                        fwd_op_dist_attr = self._dist_context.get_op_dist_attr_for_program_with_id(
463 464
                            op_desc.original_id()
                        )
465
                        assert fwd_op_dist_attr is not None
466 467 468
                        self.set_op_dist_attr(
                            rc_op, fwd_op_dist_attr, var_name_dict
                        )
469 470

                    ckpt_ops_dict[fwd_op_id][0] = False
471 472 473 474 475 476 477 478 479
                    if rc_op:
                        insert_dependencies_for_two_ops(
                            main_block,
                            idx,
                            main_block.ops[rc_op.idx - 1],
                            rc_op,
                            self._dist_context,
                            sync=False,
                        )
480
        main_program._sync_with_cpp()
481 482 483 484 485 486 487

    def reset_op_dist_attr(self, op, var_name_dict):
        op_dist_attr = self._dist_context.get_op_dist_attr_for_program(op)
        assert op_dist_attr is not None
        for input in op.desc.input_arg_names():
            if input in var_name_dict.keys():
                in_dist_attr = op_dist_attr.get_input_dist_attr(input)
488 489 490
                op_dist_attr.set_input_dist_attr(
                    var_name_dict[input], in_dist_attr
                )
491 492 493
        for output in op.desc.output_arg_names():
            if output in var_name_dict.keys():
                out_dist_attr = op_dist_attr.get_output_dist_attr(output)
494 495 496
                op_dist_attr.set_output_dist_attr(
                    var_name_dict[output], out_dist_attr
                )
497 498 499 500 501

    def set_op_dist_attr(self, op, old_dist_attr, var_name_dict):
        new_dist_attr = OperatorDistributedAttribute()
        new_dist_attr.is_recompute = True
        new_dist_attr.impl_idx = old_dist_attr.impl_idx
Z
zhaoyingli 已提交
502
        new_dist_attr.impl_type = old_dist_attr.impl_type
503 504 505 506
        new_dist_attr.process_mesh = old_dist_attr.process_mesh
        for input in old_dist_attr.inputs_dist_attrs.keys():
            if input in var_name_dict.keys():
                in_dist_attr = old_dist_attr.inputs_dist_attrs[input]
507 508 509
                new_dist_attr.set_input_dist_attr(
                    var_name_dict[input], in_dist_attr
                )
510 511 512 513 514 515
            else:
                in_dist_attr = old_dist_attr.inputs_dist_attrs[input]
                new_dist_attr.set_input_dist_attr(input, in_dist_attr)
        for output in old_dist_attr.outputs_dist_attrs.keys():
            if output in var_name_dict.keys():
                out_dist_attr = old_dist_attr.outputs_dist_attrs[output]
516 517 518
                new_dist_attr.set_output_dist_attr(
                    var_name_dict[output], out_dist_attr
                )
519 520 521 522
            else:
                out_dist_attr = old_dist_attr.outputs_dist_attrs[output]
                new_dist_attr.set_output_dist_attr(output, out_dist_attr)
        self._dist_context.set_op_dist_attr_for_program(op, new_dist_attr)