analysis_config.cc 43.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16
#include <string>
17
#include <tuple>
18

19 20
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
21
#include "paddle/fluid/inference/utils/table_printer.h"
22
#include "paddle/fluid/platform/cpu_info.h"
23
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
24
#include "paddle/fluid/platform/enforce.h"
25
#include "paddle/utils/string/split.h"
26

27 28 29 30
#ifdef PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/helper.h"
#endif

31
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
32 33 34
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

35
namespace paddle {
W
wanghuancoder 已提交
36 37
struct MkldnnQuantizerConfig;

38
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
39
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
40
extern const std::vector<std::string> kLiteSubgraphPasses;
41

42
PassStrategy *AnalysisConfig::pass_builder() const {
43 44 45 46
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
47 48
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
49 50
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
J
jianghaicheng 已提交
51 52 53
    } else if (use_ipu_) {
      LOG(INFO) << "Create IPU IR passes";
      pass_builder_.reset(new IpuPassStrategy);
54 55 56 57 58 59 60 61 62 63 64 65
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

66 67 68
  return pass_builder_.get();
}

69
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
70
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
71 72

  Update();
73
}
74 75
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
76 77
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
78 79

  Update();
80
}
81 82
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
83 84
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
85 86

  Update();
87
}
88 89
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
90
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
91 92
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
93
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
94
  gpu_device_id_ = device_id;
95
#else
Y
Yan Chunwei 已提交
96
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
97 98
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
99 100 101

  Update();
}
102

103
void AnalysisConfig::SetExecStream(void *stream) {
W
Wilber 已提交
104 105 106
  PADDLE_ENFORCE_NOT_NULL(
      stream,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
107 108 109 110 111 112
  exec_stream_ = stream;
  use_external_stream_ = true;
  Update();
}

void *AnalysisConfig::GetExecStream() const {
W
Wilber 已提交
113 114 115
  PADDLE_ENFORCE_NOT_NULL(
      exec_stream_,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
116 117 118 119 120 121 122
  return exec_stream_;
}

bool AnalysisConfig::external_stream_enabled() const {
  return use_external_stream_;
}

123
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
124 125 126
  use_gpu_ = false;

  Update();
127 128
}

129 130 131 132 133 134
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
135 136 137 138
void AnalysisConfig::EnableXpu(int l3_workspace_size,
                               bool locked,
                               bool autotune,
                               const std::string &autotune_file,
W
Wilber 已提交
139
                               const std::string &precision,
140 141
                               bool adaptive_seqlen,
                               bool enable_multi_stream) {
142 143
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
144 145 146 147 148
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
149
  xpu_enable_multi_stream_ = enable_multi_stream;
150 151 152
  Update();
}

153
void AnalysisConfig::SetXpuDeviceId(int device_id) {
W
Wilber 已提交
154 155
  PADDLE_ENFORCE_EQ(use_xpu_,
                    true,
156 157 158 159 160 161
                    platform::errors::PreconditionNotMet(
                        "Should call EnableXpu before SetXpuDeviceId."));
  xpu_device_id_ = device_id;
  Update();
}

W
Wilber 已提交
162
void AnalysisConfig::EnableNpu(int device_id) {
S
shentanyue 已提交
163
#if defined(PADDLE_WITH_ASCEND_CL)
W
Wilber 已提交
164 165
  use_npu_ = true;
  npu_device_id_ = device_id;
S
shentanyue 已提交
166 167 168 169
#elif defined(PADDLE_WITH_CUSTOM_DEVICE)
  use_custom_device_ = true;
  custom_device_id_ = device_id;
  custom_device_type_ = "npu";
W
Wilber 已提交
170 171 172 173 174 175
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif
  Update();
}
176

177 178 179 180 181 182 183 184 185 186 187 188 189
void AnalysisConfig::EnableCustomDevice(const std::string &device_type,
                                        int device_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  use_custom_device_ = true;
  custom_device_id_ = device_id;
  custom_device_type_ = device_type;
#else
  LOG(ERROR) << "Please compile with CustomDevice to EnableCustomDevice()";
  use_custom_device_ = false;
#endif
  Update();
}

W
Wilber 已提交
190 191
void AnalysisConfig::EnableIpu(int ipu_device_num,
                               int ipu_micro_batch_size,
192 193
                               bool ipu_enable_pipelining,
                               int ipu_batches_per_step) {
J
jianghaicheng 已提交
194 195 196
  enable_ir_optim_ = true;

  use_ipu_ = true;
197 198
  ipu_device_num_ = ipu_device_num;
  ipu_micro_batch_size_ = ipu_micro_batch_size;
J
jianghaicheng 已提交
199 200
  ipu_enable_pipelining_ = ipu_enable_pipelining;
  ipu_batches_per_step_ = ipu_batches_per_step;
201 202 203 204

  Update();
}

W
Wilber 已提交
205 206
void AnalysisConfig::SetIpuConfig(bool ipu_enable_fp16,
                                  int ipu_replica_num,
207
                                  float ipu_available_memory_proportion,
208 209
                                  bool ipu_enable_half_partial,
                                  bool ipu_enable_model_runtime_executor) {
210 211 212 213
  ipu_enable_fp16_ = ipu_enable_fp16;
  ipu_replica_num_ = ipu_replica_num;
  ipu_available_memory_proportion_ = ipu_available_memory_proportion;
  ipu_enable_half_partial_ = ipu_enable_half_partial;
214
  ipu_enable_model_runtime_executor_ = ipu_enable_model_runtime_executor;
J
jianghaicheng 已提交
215 216 217

  Update();
}
W
Wilber 已提交
218

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
void AnalysisConfig::SetIpuCustomInfo(
    const std::vector<std::vector<std::string>> &ipu_custom_ops_info,
    const std::map<std::string, bool> &ipu_custom_patterns) {
  ipu_custom_ops_info_ = ipu_custom_ops_info;
  for (auto iter = ipu_custom_patterns.begin();
       iter != ipu_custom_patterns.end();
       iter++) {
    if (iter->second == true) {
      ipu_custom_patterns_.push_back(
          std::vector<std::string>{iter->first, "True"});
    } else if (iter->second == false) {
      ipu_custom_patterns_.push_back(
          std::vector<std::string>{iter->first, "False"});
    }
  }

  Update();
}

void AnalysisConfig::LoadIpuConfig(const std::string &config_path) {
  std::ifstream fin(config_path, std::ios::in);
  PADDLE_ENFORCE_EQ(
      static_cast<bool>(fin.is_open()),
      true,
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_path));
  std::string line;
  while (std::getline(fin, line)) {
    // remove all space
    line.erase(std::remove(line.begin(), line.end(), ' '), line.end());

    std::string key;
    std::string value;
    std::istringstream stream(line);
    // Split string to key and value based on the first `,`
    std::getline(stream, key, ',');
    std::getline(stream, value);

    auto string2bool = [](std::string s) {
      std::transform(s.begin(), s.end(), s.begin(), [](unsigned char c) {
        return ::tolower(c);
      });
      return s == "true" || s == "1";
    };

    // ipu_custom_ops_info:
    // [[paddle_op_name, popart_op_name, domain, version], [paddle_op_name,
    // popart_op_name, domain, version]...]
    // ipu_custom_patterns:
    // [[paddle_op_name, enable_pattern], [paddle_op_name, enable_pattern]...]
    auto string2vector = [](std::string s) {
      std::vector<std::vector<std::string>> custom_info;
      s.erase(0, 1);
      s.pop_back();

      std::string one;
      std::istringstream s_stream(s);
      while (std::getline(s_stream, one, ']')) {
        if (!one.empty()) {
          // remove `[`
          one.erase(0, 1);
          custom_info.push_back(paddle::string::Split(one, ','));
        }
      }
      return custom_info;
    };

    if (ipu_config_mapper_.find(key) == ipu_config_mapper_.end()) {
      PADDLE_THROW(platform::errors::InvalidArgument(
289
          "invalid key {} in IPU config: ", key));
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    }
    switch (ipu_config_mapper_.at(key)) {
      case ipu_config_code::ipu_device_num:
        ipu_device_num_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_micro_batch_size:
        ipu_micro_batch_size_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_enable_pipelining:
        ipu_enable_pipelining_ = string2bool(value);
        break;
      case ipu_config_code::ipu_batches_per_step:
        ipu_batches_per_step_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_enable_fp16:
        ipu_enable_fp16_ = string2bool(value);
        break;
      case ipu_config_code::ipu_replica_num:
        ipu_replica_num_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_available_memory_proportion:
        ipu_available_memory_proportion_ = std::stof(value);
        break;
      case ipu_config_code::ipu_enable_half_partial:
        ipu_enable_half_partial_ = string2bool(value);
        break;
      case ipu_config_code::ipu_custom_ops_info:
        ipu_custom_ops_info_ = string2vector(value);
        break;
      case ipu_config_code::ipu_custom_patterns:
        ipu_custom_patterns_ = string2vector(value);
        break;
322 323 324
      case ipu_config_code::ipu_enable_model_runtime_executor:
        ipu_enable_model_runtime_executor_ = string2bool(value);
        break;
325 326 327 328 329 330 331 332 333 334 335

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "invalid key {} in IPU config", key));
        break;
    }
  }

  Update();
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
void AnalysisConfig::EnableONNXRuntime() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  use_onnxruntime_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableONNXRuntime()";
  use_onnxruntime_ = false;
#endif

  Update();
}

void AnalysisConfig::DisableONNXRuntime() {
  use_onnxruntime_ = false;
  Update();
}

void AnalysisConfig::EnableORTOptimization() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  enable_ort_optimization_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableORTOptimization()";
  enable_ort_optimization_ = false;
#endif

  Update();
}

363
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
364 365 366 367 368 369
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
370

371
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
372 373
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
374

375
  CP_MEMBER(use_fc_padding_);
376
  // GPU related.
377
  CP_MEMBER(use_gpu_);
378 379
  CP_MEMBER(use_external_stream_);
  CP_MEMBER(exec_stream_);
380
  CP_MEMBER(use_cudnn_);
381
  CP_MEMBER(gpu_device_id_);
382
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
383

384 385 386
  // Mixed related.
  CP_MEMBER(mixed_black_list_);

Y
Yan Chunwei 已提交
387
  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
388
  // TensorRT related.
389 390 391 392
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
393
  CP_MEMBER(tensorrt_precision_mode_);
394
  CP_MEMBER(trt_disabled_ops_);
395 396
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
397
  CP_MEMBER(trt_use_static_engine_);
398
  CP_MEMBER(trt_use_calib_mode_);
399
  CP_MEMBER(trt_use_varseqlen_);
400
  CP_MEMBER(trt_with_interleaved_);
401 402
  CP_MEMBER(tensorrt_transformer_posid_);
  CP_MEMBER(tensorrt_transformer_maskid_);
403 404 405 406
  CP_MEMBER(trt_tuned_dynamic_shape_);
  CP_MEMBER(trt_allow_build_at_runtime_);
  CP_MEMBER(collect_shape_range_info_);
  CP_MEMBER(shape_range_info_path_);
407
  CP_MEMBER(trt_use_inspector_);
408
  CP_MEMBER(trt_engine_memory_sharing_);
D
denglin-github 已提交
409 410 411
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
D
denglin-github 已提交
412 413 414 415 416 417 418
  CP_MEMBER(dlnne_max_batchsize_);
  CP_MEMBER(dlnne_use_static_batch_);
  CP_MEMBER(dlnne_weight_share_mode_);
  CP_MEMBER(dlnne_use_calib_mode_);
  CP_MEMBER(dlnne_precision_mode_);
  CP_MEMBER(dlnne_disable_nodes_by_outputs_);
  CP_MEMBER(dlnne_input_shape_dict_);
S
Sylwester Fraczek 已提交
419
  // MKLDNN related.
420 421
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
422
  CP_MEMBER(mkldnn_cache_capacity_);
423 424 425
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
426
  // Quantization related.
B
baoachun 已提交
427 428 429
  CP_MEMBER(use_mkldnn_int8_);
  CP_MEMBER(quantize_enabled_op_types_);
  CP_MEMBER(quantize_excluded_op_ids_);
430 431
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
432 433 434
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
435
  CP_MEMBER(disable_trt_plugin_fp16_);
436

石晓伟 已提交
437 438 439 440
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
441 442
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
443
  // XPU related.
444
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
445
  CP_MEMBER(xpu_device_id_);
446
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
447 448 449 450 451
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
452
  CP_MEMBER(xpu_enable_multi_stream_);
石晓伟 已提交
453

454 455 456
  // Lite OpenCL Related
  CP_MEMBER(use_opencl_);

W
Wilber 已提交
457 458 459
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);
460
  CP_MEMBER(nnadapter_config_);
W
Wilber 已提交
461

462 463 464
  // profile related.
  CP_MEMBER(with_profile_);

465 466 467
  // glog related.
  CP_MEMBER(with_glog_info_);

468 469 470 471 472 473 474 475 476 477
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

478 479
  CP_MEMBER(thread_local_stream_);

J
jianghaicheng 已提交
480 481 482
  // ipu related
  CP_MEMBER(use_ipu_);
  CP_MEMBER(ipu_device_num_);
483
  CP_MEMBER(ipu_micro_batch_size_);
J
jianghaicheng 已提交
484 485
  CP_MEMBER(ipu_enable_pipelining_);
  CP_MEMBER(ipu_batches_per_step_);
486 487 488 489
  CP_MEMBER(ipu_enable_fp16_);
  CP_MEMBER(ipu_replica_num_);
  CP_MEMBER(ipu_available_memory_proportion_);
  CP_MEMBER(ipu_enable_half_partial_);
490
  CP_MEMBER(ipu_enable_model_runtime_executor_);
491 492
  CP_MEMBER(ipu_custom_ops_info_);
  CP_MEMBER(ipu_custom_patterns_);
J
jianghaicheng 已提交
493

494 495 496
  // fleet exe related
  CP_MEMBER(dist_config_);

497 498 499 500 501
  // custom device related.
  CP_MEMBER(use_custom_device_);
  CP_MEMBER(custom_device_type_);
  CP_MEMBER(custom_device_id_);

502 503 504 505
  // JITLayer relate
  CP_MEMBER(apply_optim_);
  CP_MEMBER(skip_load_params_);

506
  if (use_gpu_) {
W
Wilber 已提交
507 508
    PADDLE_ENFORCE_EQ(use_xpu_,
                      false,
509 510
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
511 512
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
J
jianghaicheng 已提交
513 514 515
  } else if (use_ipu_) {
    pass_builder_.reset(new IpuPassStrategy(
        *static_cast<IpuPassStrategy *>(other.pass_builder())));
516 517 518
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
519 520 521
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
522 523 524 525 526
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

527
#undef CP_MEMBER
Y
Yan Chunwei 已提交
528

W
Wilber 已提交
529 530 531 532 533
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
534
    pass_builder_->ClearPasses();
W
Wilber 已提交
535
    auto other_passes = other.pass_builder()->AllPasses();
536 537
    for (auto pass : other_passes) {
      pass_builder_->AppendPass(pass);
W
Wilber 已提交
538
    }
539
  }
D
denglin-github 已提交
540 541 542 543 544 545 546 547
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
W
Wilber 已提交
548 549 550 551
    std::set_difference(all_passes.begin(),
                        all_passes.end(),
                        other_passes.begin(),
                        other_passes.end(),
D
denglin-github 已提交
552 553 554 555 556
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
W
Wilber 已提交
557 558 559 560

  for (auto &delete_pass : other.pass_builder()->GetAllDeletedPasses()) {
    pass_builder_->DeletePass(delete_pass);
  }
561 562
}

563
void AnalysisConfig::EnableCUDNN() {
564
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
565 566 567 568 569 570 571 572 573
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

574
void AnalysisConfig::EnableMKLDNN() {
575 576 577 578 579 580
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
581 582

  Update();
583 584
}

585 586 587 588 589 590 591 592 593
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

594 595 596 597 598 599 600 601 602 603 604 605 606
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

607 608
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
609 610
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
611 612 613 614
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
615 616 617 618
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
619 620 621 622 623 624 625 626
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

P
Paulina Gacek 已提交
627 628 629 630 631 632 633 634 635 636
void AnalysisConfig::DisableMkldnnFcPasses() {
#ifdef PADDLE_WITH_MKLDNN
  disable_mkldnn_fc_passes_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use DisableMkldnnFcPasses";
  disable_mkldnn_fc_passes_ = false;
#endif
  Update();
}

B
baoachun 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
void AnalysisConfig::EnableMkldnnInt8(
    const std::unordered_set<std::string> &op_list) {
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_int8_ = true;
  use_fc_padding_ = false;
  if (!op_list.empty()) {
    for (auto &type : op_list) {
      if (!quantize_enabled_op_types_.count(type)) {
        LOG(ERROR) << "There are unsupported operators in the configured "
                      "quantization operator list. The unsupported operator "
                      "is: "
                   << type;
        use_mkldnn_int8_ = false;
        break;
      }
    }
    if (use_mkldnn_int8_) {
      quantize_enabled_op_types_.clear();
      quantize_enabled_op_types_.insert(op_list.begin(), op_list.end());
    }
  }
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnInt8";
  use_mkldnn_int8_ = false;
#endif

  Update();
}

666
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
667
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
668 669
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
670
  return mkldnn_quantizer_config_.get();
671 672
}

673
void AnalysisConfig::EnableTensorRtEngine(
674
    int64_t workspace_size,
W
Wilber 已提交
675 676 677 678
    int max_batch_size,
    int min_subgraph_size,
    AnalysisConfig::Precision precision_mode,
    bool use_static,
679
    bool use_calib_mode) {
680
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
681
  if (!use_gpu()) {
682
    LOG(ERROR) << "To use TensorRT engine, please call EnableUseGpu() first";
Y
Yan Chunwei 已提交
683 684 685
    return;
  }

686 687 688
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
689
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
690
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
691
  trt_use_static_engine_ = use_static;
692
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
693

694
  Update();
Y
Yan Chunwei 已提交
695 696 697 698
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
699 700
}

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
void AnalysisConfig::EnableTensorRTMemoryOptim(bool engine_memory_sharing,
                                               int sharing_identifier) {
  PADDLE_ENFORCE_EQ(
      use_tensorrt_,
      true,
      platform::errors::InvalidArgument(
          "To enable TensorRT memory optim, please call "
          "EnableTensorRtEngine or enable_tensorrt_engine first."));
  PADDLE_ENFORCE_GE(sharing_identifier,
                    0,
                    platform::errors::InvalidArgument(
                        "The value of sharing_identifier must be greater "
                        "than or equal to 0."));
  if (!engine_memory_sharing) {
    PADDLE_ENFORCE_EQ(sharing_identifier,
                      0,
                      platform::errors::InvalidArgument(
                          "The value of sharing_identifier must be equal to 0 "
                          "when engine_memory_sharing is false."));
  }
  trt_engine_memory_sharing_ = engine_memory_sharing;
  trt_engine_memory_sharing_identifier_ = sharing_identifier;
}

D
denglin-github 已提交
725 726 727 728 729 730 731 732 733
void AnalysisConfig::EnableDlnne(
    int min_subgraph_size,
    int max_batch_size,
    bool use_static_batch,
    std::string weight_share_mode,
    std::unordered_set<std::string> disable_nodes_by_ouputs,
    std::map<std::string, std::vector<int64_t>> dlnne_input_shape_dict,
    bool use_calib_mode,
    AnalysisConfig::Precision precision_mode) {
D
denglin-github 已提交
734 735
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
D
denglin-github 已提交
736 737 738 739 740 741 742
  dlnne_max_batchsize_ = max_batch_size;
  dlnne_use_static_batch_ = use_static_batch;
  dlnne_weight_share_mode_ = weight_share_mode;
  dlnne_disable_nodes_by_outputs_ = disable_nodes_by_ouputs;
  dlnne_input_shape_dict_ = dlnne_input_shape_dict;
  dlnne_use_calib_mode_ = use_calib_mode;
  dlnne_precision_mode_ = precision_mode;
D
denglin-github 已提交
743 744 745
  Update();
}

746 747 748 749 750 751 752 753 754 755 756
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

757 758 759 760 761
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

762 763
void AnalysisConfig::EnableTensorRtInspector() { trt_use_inspector_ = true; }

764 765 766 767 768
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

769
void AnalysisConfig::EnableVarseqlen() { trt_use_varseqlen_ = true; }
770

Y
Yan Chunwei 已提交
771
// TODO(Superjomn) refactor this, buggy.
772
void AnalysisConfig::Update() {
773
  auto &&info = SerializeInfoCache();
774 775
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
776
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
777 778
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
J
jianghaicheng 已提交
779
      ((use_npu() ^ pass_builder_->use_npu())) ||
780 781
      ((use_ipu() ^ pass_builder_->use_ipu())) ||
      ((use_custom_device() ^ pass_builder_->use_custom_device()))) {
Y
Yan Chunwei 已提交
782 783
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);
J
jianghaicheng 已提交
784 785
    } else if (use_ipu()) {
      pass_builder_.reset(new IpuPassStrategy);
786 787
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
788 789
          use_gpu(),
          false,
790 791 792
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
793 794
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
795 796
          use_gpu(),
          false,
W
Wilber 已提交
797 798 799
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
800 801
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
802 803
          use_gpu(),
          false,
804 805 806
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy);
Y
Yan Chunwei 已提交
807 808 809
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
810

811
  } else {
Y
Yan Chunwei 已提交
812 813 814
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
J
jianghaicheng 已提交
815 816 817 818
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used.";
      pass_builder_.reset(new IpuPassStrategy(
          *static_cast<IpuPassStrategy *>(pass_builder_.get())));
819 820
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
821 822
          use_gpu(),
          false,
823 824 825 826
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
827 828
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
829 830
          use_gpu(),
          false,
W
Wilber 已提交
831 832 833 834
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
835 836
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
837 838
          use_gpu(),
          false,
839 840 841 842
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy(
          *static_cast<CustomDevicePassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
843 844 845 846
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
847 848 849
  }

  if (use_tensorrt_) {
850 851
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
852
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
853
          (pass == "conv_bn_fuse_pass")) {
854 855
        continue;
      }
856
      pass_builder()->AppendPass(pass);
857 858
    }
  }
859

D
denglin-github 已提交
860 861 862 863 864 865 866
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

867
  if (use_gpu() && use_cudnn_) {
868
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
869 870 871 872 873 874 875 876
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

877
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
878
#ifdef PADDLE_WITH_MKLDNN
879 880 881
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
882 883
    } else {
      pass_builder()->EnableMKLDNN();
884 885 886 887
    }
#endif
  }

888 889 890 891 892
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
893 894
    }
#ifdef PADDLE_WITH_MKLDNN
895
    pass_builder()->EnableMkldnnQuantizer();
896 897 898
#endif
  }

899 900 901 902 903 904
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

B
baoachun 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917 918
  if (use_mkldnn_int8_) {
#ifdef PADDLE_WITH_MKLDNN
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when IR optimization "
                    "is enabled.";
    } else if (!use_mkldnn_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when MKLDNN "
                    "is enabled.";
    } else {
      pass_builder()->EnableMkldnnInt8();
    }
#endif
  }

P
Paulina Gacek 已提交
919 920 921 922 923 924
  if (disable_mkldnn_fc_passes_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->DisableMkldnnFcPasses();
#endif
  }

925
#ifdef PADDLE_WITH_MKLDNN
926 927
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
928
#else
Y
Yan Chunwei 已提交
929
  if (enable_memory_optim_) {
930 931
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
932 933
  }

石晓伟 已提交
934 935 936 937 938 939 940
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
W
Wilber 已提交
941 942
      if (std::find(lite_passes_filter_.begin(),
                    lite_passes_filter_.end(),
石晓伟 已提交
943 944 945 946 947 948
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

949
  if (use_xpu_) {
950
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
W
Wilber 已提交
951 952
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
953 954 955
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
956 957 958 959 960
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
961 962
  }

W
Wilber 已提交
963
  if (use_npu_) {
964
#if defined(PADDLE_WITH_ASCEND_CL) || defined(LITE_SUBGRAPH_WITH_NPU)
W
Wilber 已提交
965 966
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
W
Wilber 已提交
967 968 969 970 971 972 973 974 975
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }
J
jianghaicheng 已提交
976 977 978 979 980 981 982
  if (use_ipu_) {
#ifndef PADDLE_WITH_IPU
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the ipu "
        "but did not have the option -DWITH_IPU compiled."));
#endif
  }
983 984 985 986 987 988 989
  if (use_custom_device_) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the custom device "
        "but did not have the option -DWITH_CUSTOM_DEVICE compiled."));
#endif
  }
990 991
}

992
std::string AnalysisConfig::SerializeInfoCache() {
993
  std::stringstream ss;
Y
Yan Chunwei 已提交
994 995 996 997
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

998
  ss << use_gpu_;
999 1000
  ss << use_external_stream_;
  ss << exec_stream_;
1001
  ss << use_fc_padding_;
1002 1003
  ss << gpu_device_id_;
  ss << xpu_device_id_;
1004 1005 1006 1007 1008
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
1009 1010
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
1011 1012 1013
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

1014 1015 1016
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

1017 1018 1019
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
1020
  ss << enable_memory_optim_;
1021
  ss << trt_engine_memory_sharing_;
1022 1023

  ss << use_mkldnn_;
1024
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
1025 1026 1027
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

1028
  ss << use_mkldnn_quantizer_;
1029
  ss << use_mkldnn_bfloat16_;
1030
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
B
baoachun 已提交
1031 1032 1033
  ss << use_mkldnn_int8_;
  for (auto &item : quantize_enabled_op_types_) ss << item;
  for (auto &item : quantize_excluded_op_ids_) ss << item;
1034
  ss << ";";
Y
Yan Chunwei 已提交
1035 1036
  ss << model_from_memory_;

1037 1038
  ss << with_profile_;

1039 1040
  ss << with_glog_info_;

1041 1042 1043 1044
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
1045 1046
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
1047 1048

  ss << use_lite_;
1049 1050
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
1051 1052 1053 1054 1055
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
1056
  ss << xpu_enable_multi_stream_;
1057

W
Wilber 已提交
1058 1059 1060
  ss << use_npu_;
  ss << npu_device_id_;

1061 1062
  ss << thread_local_stream_;

J
jianghaicheng 已提交
1063 1064
  ss << use_ipu_;
  ss << ipu_device_num_;
1065
  ss << ipu_micro_batch_size_;
J
jianghaicheng 已提交
1066 1067
  ss << ipu_enable_pipelining_;
  ss << ipu_batches_per_step_;
1068 1069 1070 1071
  ss << ipu_enable_fp16_;
  ss << ipu_replica_num_;
  ss << ipu_available_memory_proportion_;
  ss << ipu_enable_half_partial_;
1072
  ss << ipu_enable_model_runtime_executor_;
1073 1074 1075 1076 1077 1078
  for (auto custom_op : ipu_custom_ops_info_)
    for (auto attr : custom_op) ss << attr;
  ss << ";";
  for (auto pattern : ipu_custom_patterns_)
    for (auto attr : pattern) ss << attr;
  ss << ";";
1079
  for (auto &op : mixed_black_list_) ss << op.c_str();
1080 1081 1082
  return ss.str();
}

1083
void AnalysisConfig::SetCpuMathLibraryNumThreads(
1084 1085
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
1086 1087

  Update();
1088 1089
}

1090
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
1091
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1092 1093
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
1094
  size_t gpu_total, gpu_available;
1095
  platform::SetDeviceId(gpu_device_id_);
1096 1097
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
1098 1099
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
1100 1101 1102 1103
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
1104 1105 1106 1107
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
1108 1109
}

1110 1111
void AnalysisConfig::EnableMemoryOptim(bool x) {
  enable_memory_optim_ = x;
Y
Yan Chunwei 已提交
1112 1113 1114
  Update();
}

1115
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
1116 1117 1118
  return enable_memory_optim_;
}

1119 1120 1121 1122
bool AnalysisConfig::trt_engine_memory_sharing() const {
  return trt_engine_memory_sharing_;
}

1123 1124 1125 1126
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
1127 1128
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
1129
  model_from_memory_ = true;
T
Tao Luo 已提交
1130 1131
}

1132
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
1133 1134 1135 1136 1137
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
1138
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
1139 1140 1141 1142 1143
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
1144 1145 1146 1147
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
1148 1149 1150 1151 1152 1153

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

1154 1155 1156 1157 1158
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
1159
void AnalysisConfig::EnableLiteEngine(
W
Wilber 已提交
1160 1161
    AnalysisConfig::Precision precision_mode,
    bool zero_copy,
石晓伟 已提交
1162 1163 1164 1165 1166 1167
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
1168
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
1169 1170 1171
  Update();
}

1172 1173 1174 1175 1176
void AnalysisConfig::EnableOpenCL() {
  use_opencl_ = true;
  Update();
}

1177 1178 1179 1180 1181 1182 1183
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

1184 1185
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
std::string AnalysisConfig::Summary() {
  const std::vector<std::string> header{"Option", "Value"};
  paddle::inference::TablePrinter os(header);

  if (!model_dir_.empty()) {
    os.InsertRow({"model_dir", model_dir_});
  }
  if (!(prog_file_.empty() && params_file_.empty())) {
    os.InsertRow({"model_file", prog_file_});
    os.InsertRow({"params_file", params_file_});
  }
1197

1198 1199 1200 1201 1202 1203 1204 1205
  if (model_from_memory_) {
    os.InsertRow({"model_from_memory", params_file_});
  }
  os.InsetDivider();

  // cpu info
  os.InsertRow(
      {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)});
1206
  os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"});
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
  os.InsertRow(
      {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)});
  os.InsetDivider();

  // gpu info
  os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
  if (use_gpu_) {
    os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
    os.InsertRow({"memory_pool_init_size",
                  std::to_string(memory_pool_init_size_mb_) + "MB"});
1217 1218
    os.InsertRow(
        {"use_external_stream", use_external_stream_ ? "true" : "false"});
1219 1220 1221 1222 1223
    os.InsertRow(
        {"thread_local_stream", thread_local_stream_ ? "true" : "false"});

    os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"});
    if (use_tensorrt_) {
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
#ifdef PADDLE_WITH_TENSORRT
      auto Precision2String =
          [](paddle::AnalysisConfig::Precision prec) -> std::string {
        if (prec == Precision::kFloat32)
          return "fp32";
        else if (prec == Precision::kHalf)
          return "fp16";
        else if (prec == Precision::kInt8)
          return "int8";
        else
          return "None";
      };
      auto version2string =
          [](const std::tuple<int, int, int> &ver) -> std::string {
        std::ostringstream os;
        int major = std::get<0>(ver);
        int minor = std::get<1>(ver);
        int patch = std::get<2>(ver);
        os << major << "." << minor << "." << patch;
        return os.str();
      };
      os.InsertRow(
          {"trt_compile_version",
           version2string(inference::tensorrt::GetTrtCompileVersion())});
      os.InsertRow(
          {"trt_runtime_version",
           version2string(inference::tensorrt::GetTrtRuntimeVersion())});
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
      os.InsertRow({"tensorrt_precision_mode",
                    Precision2String(tensorrt_precision_mode_)});
      os.InsertRow({"tensorrt_workspace_size",
                    std::to_string(tensorrt_workspace_size_)});
      os.InsertRow(
          {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)});
      os.InsertRow({"tensorrt_min_subgraph_size",
                    std::to_string(tensorrt_min_subgraph_size_)});
      os.InsertRow({"tensorrt_use_static_engine",
                    trt_use_static_engine_ ? "true" : "false"});
      os.InsertRow(
          {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"});

      // dynamic_shape
      os.InsertRow({"tensorrt_enable_dynamic_shape",
                    min_input_shape_.empty() ? "false" : "true"});
W
Wilber 已提交
1267 1268 1269
      os.InsertRow(
          {"tensorrt_tuned_dynamic_shape",
           trt_tuned_dynamic_shape_ ? shape_range_info_path_ : "false"});
1270

1271 1272
      os.InsertRow(
          {"tensorrt_use_varseqlen", trt_use_varseqlen_ ? "true" : "false"});
1273 1274
      os.InsertRow({"tensorrt_with_interleaved",
                    trt_with_interleaved_ ? "true" : "false"});
1275 1276 1277
      os.InsertRow({"tensorrt_transformer_posid", tensorrt_transformer_posid_});
      os.InsertRow(
          {"tensorrt_transformer_maskid", tensorrt_transformer_maskid_});
1278 1279 1280 1281
      os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"});
      if (trt_use_dla_) {
        os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)});
      }
1282 1283
      os.InsertRow({"trt_engine_memory_sharing",
                    trt_engine_memory_sharing_ ? "true" : "false"});
1284
#endif
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    }
  }
  os.InsetDivider();

  // xpu info
  os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"});
  if (use_xpu_) {
    os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)});
    os.InsertRow(
        {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)});
  }
  os.InsetDivider();

  if (use_lite_) {
    os.InsertRow({"use_lite", use_lite_ ? "true" : "false"});
  }

  // ir info
  os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"});
  os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"});
  os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"});
  os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"});
  os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"});
1308 1309
  os.InsertRow({"collect_shape_range_info",
                collect_shape_range_info_ ? shape_range_info_path_ : "false"});
1310 1311 1312 1313

  return os.PrintTable();
}

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
LiteNNAdapterConfig &LiteNNAdapterConfig::SetDeviceNames(
    const std::vector<std::string> &names) {
  nnadapter_device_names = names;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetContextProperties(
    const std::string &properties) {
  nnadapter_context_properties = properties;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheDir(
    const std::string &dir) {
  nnadapter_model_cache_dir = dir;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheBuffers(
    const std::string &model_cache_token,
    const std::vector<char> &model_cache_buffer) {
W
Wilber 已提交
1335 1336
  PADDLE_ENFORCE_EQ(model_cache_token.empty(),
                    false,
1337 1338
                    platform::errors::InvalidArgument(
                        "model_cache_token should not be empty."));
W
Wilber 已提交
1339 1340
  PADDLE_ENFORCE_EQ(model_cache_buffer.empty(),
                    false,
1341 1342 1343
                    platform::errors::InvalidArgument(
                        "model_cache_buffer should not be empty."));
  PADDLE_ENFORCE_EQ(nnadapter_model_cache_buffers.count(model_cache_token),
1344 1345 1346
                    false,
                    platform::errors::InvalidArgument(
                        "model_cache_token has already been set."));
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

  nnadapter_model_cache_buffers[model_cache_token] = model_cache_buffer;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath(
    const std::string &path) {
  nnadapter_subgraph_partition_config_path = path;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer(
    const std::string &buffer) {
  nnadapter_subgraph_partition_config_buffer = buffer;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Enable() {
  use_nnadapter = true;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Disable() {
  use_nnadapter = false;
  return *this;
}

1372 1373 1374 1375 1376 1377 1378
void AnalysisConfig::CollectShapeRangeInfo(
    const std::string &shape_range_info_path) {
  LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and "
               "collect the shape information of "
            << "all intermediate tensors in the compute graph and calculate "
               "the min_shape, max_shape and opt_shape.";
  collect_shape_range_info_ = true;
W
Wilber 已提交
1379 1380
  PADDLE_ENFORCE_EQ(shape_range_info_path.empty(),
                    false,
1381 1382 1383 1384 1385 1386
                    platform::errors::InvalidArgument(
                        "The shape_range_info_path should not be empty, please "
                        "re-check the argument."));
  shape_range_info_path_ = shape_range_info_path;
}

1387
const std::string &AnalysisConfig::shape_range_info_path() const {
1388 1389 1390
  return shape_range_info_path_;
}

1391
bool AnalysisConfig::shape_range_info_collected() const {
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
  return collect_shape_range_info_;
}

void AnalysisConfig::EnableTunedTensorRtDynamicShape(
    const std::string &shape_range_info_path, bool allow_build_at_runtime) {
  shape_range_info_path_ = shape_range_info_path;
  trt_allow_build_at_runtime_ = allow_build_at_runtime;
  trt_tuned_dynamic_shape_ = true;
}

1402
bool AnalysisConfig::tuned_tensorrt_dynamic_shape() const {
1403 1404 1405
  return trt_tuned_dynamic_shape_;
}

1406
bool AnalysisConfig::trt_allow_build_at_runtime() const {
1407 1408
  return trt_allow_build_at_runtime_;
}
1409 1410 1411 1412 1413 1414

void AnalysisConfig::Exp_SetBlackListOpsForMixedModel(
    const std::unordered_set<std::string> &black_list) {
  mixed_black_list_ = black_list;
}

1415
}  // namespace paddle