activation_mkldnn_op.cc 13.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/activation_op.h"
K
Krzysztof Binias 已提交
16
#include "paddle/fluid/platform/mkldnn_helper.h"
17 18 19 20

namespace paddle {
namespace operators {

21 22 23 24 25 26 27 28
using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
29 30

namespace {
K
Krzysztof Binias 已提交
31 32
std::string gethash(const mkldnn::memory::dims &operand_dims,
                    const mkldnn::algorithm algorithm) {
K
Krzysztof Binias 已提交
33 34 35 36 37 38 39 40
  auto dim2str = [](const mkldnn::memory::dims &operand_dims) {
    std::string dstr = "";
    for (size_t i = 0; i < operand_dims.size(); ++i) {
      dstr += std::to_string(operand_dims[i]) + "-";
    }
    return dstr;
  };
  return dim2str(operand_dims) + std::to_string(algorithm);
K
Krzysztof Binias 已提交
41
}
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
}  // namespace

template <typename Functor>
class MKLDNNActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    PADDLE_ENFORCE(x->layout() == DataLayout::kMKLDNN &&
                       x->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input x tensor");

    Functor functor;

    auto attrs = functor.GetAttrs();
    for (auto &attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(ctx);
  }
};
K
Krzysztof Binias 已提交
63

64 65 66 67 68 69 70 71 72 73
template <typename Functor>
class MKLDNNActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
    PADDLE_ENFORCE(diff_y->layout() == DataLayout::kMKLDNN &&
                       diff_y->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input OutGrad tensor");

74 75 76 77
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

78 79 80 81 82 83 84 85 86 87 88 89 90 91
    Functor functor;

    auto attrs = functor.GetAttrs();
    for (auto &attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(ctx);
  }
};

template <typename T>
void eltwise_forward(const framework::ExecutionContext &ctx,
                     mkldnn::algorithm algorithm, const T alpha = 0,
                     const T beta = 0) {
92 93 94 95 96
  PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                 "It must use CPUPlace.");
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
  const auto &mkldnn_engine = dev_ctx.GetEngine();

97 98
  const auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Output<Tensor>("Out");
99

100 101
  const T *x_data = x->data<T>();
  T *y_data = y->mutable_data<T>(ctx.GetPlace());
102

103 104 105 106
  std::vector<int> src_tz = framework::vectorize2int(x->dims());

  auto src_format =
      src_tz.size() == 2 ? mkldnn::memory::format::nc : x->format();
107

K
Krzysztof Binias 已提交
108
  const std::string key = gethash(src_tz, algorithm);
K
Krzysztof Binias 已提交
109 110
  const std::string key_src_data =
      key + ctx.op().Output("Out") + "@eltwise_fwd_src_data";
111 112 113 114 115 116 117 118
  const std::string key_src_layout =
      key + ctx.op().Output("Out") + "@eltwise_fwd_src_layout";
  const std::string key_with_layout = key + std::to_string(src_format);
  const std::string key_src_mem = key_with_layout + "@eltwise_fwd_src_mem";
  const std::string key_dst_mem = key_with_layout + "@eltwise_fwd_dst_mem";
  const std::string key_fwd = key_with_layout + "@eltwise_fwd";
  const std::string key_fwd_pd = key_with_layout + "@eltwise_fwd_pd";

119 120
  bool is_test = ctx.Attr<bool>("is_test");

121 122 123
  // save input data and layout to be referred in backward path
  auto p_src_data = std::make_shared<const T *>(x_data);
  auto p_src_layout = std::make_shared<memory::format>(src_format);
124 125 126 127
  if (!is_test) {
    dev_ctx.SetBlob(key_src_data, p_src_data);
    dev_ctx.SetBlob(key_src_layout, p_src_layout);
  }
K
Krzysztof Binias 已提交
128

K
Krzysztof Binias 已提交
129 130
  auto p_fwd = std::static_pointer_cast<mkldnn::eltwise_forward>(
      dev_ctx.GetBlob(key_fwd));
K
Krzysztof Binias 已提交
131

132
  std::shared_ptr<memory> dst_memory;
K
Krzysztof Binias 已提交
133

K
Krzysztof Binias 已提交
134
  if (p_fwd == nullptr) {
135 136 137 138 139 140 141 142 143
    // create mkldnn memory for input X
    auto src_md = platform::MKLDNNMemDesc(
        src_tz, platform::MKLDNNGetDataType<T>(), src_format);
    auto src_memory = std::shared_ptr<memory>(
        new memory({src_md, mkldnn_engine}, to_void_cast(x_data)));
    // save src_memory to be referred in backward path
    dev_ctx.SetBlob(key_src_mem, src_memory);

    // create primitive descriptor for activation forward and save it
144 145 146
    auto mkldnn_forward_prop_kind = is_test
                                        ? mkldnn::prop_kind::forward_inference
                                        : mkldnn::prop_kind::forward_training;
147
    auto forward_desc = mkldnn::eltwise_forward::desc(
148
        mkldnn_forward_prop_kind, algorithm,
149 150 151 152 153
        src_memory->get_primitive_desc().desc(), alpha, beta);
    auto forward_pd = std::make_shared<mkldnn::eltwise_forward::primitive_desc>(
        forward_desc, mkldnn_engine);

    // save prim desc into global device context to be referred in backward path
154
    if (!is_test) dev_ctx.SetBlob(key_fwd_pd, forward_pd);
155 156 157 158 159 160 161 162 163 164

    // create mkldnn memory for output y
    dst_memory =
        std::make_shared<memory>(forward_pd->dst_primitive_desc(), y_data);

    dev_ctx.SetBlob(key_dst_mem, dst_memory);

    // create activation primitive
    p_fwd = std::make_shared<mkldnn::eltwise_forward>(*forward_pd, *src_memory,
                                                      *dst_memory);
K
Krzysztof Binias 已提交
165 166
    dev_ctx.SetBlob(key_fwd, p_fwd);
  } else {
K
Krzysztof Binias 已提交
167
    // primitives already exist
168
    auto src_memory =
K
Krzysztof Binias 已提交
169
        std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_src_mem));
170 171 172
    PADDLE_ENFORCE(src_memory != nullptr,
                   "Fail to find eltwise src_memory in device context.");
    dst_memory =
K
Krzysztof Binias 已提交
173
        std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_dst_mem));
174 175
    PADDLE_ENFORCE(dst_memory != nullptr,
                   "Fail to find eltwise dst_memory in device context.");
K
Krzysztof Binias 已提交
176

177 178
    src_memory->set_data_handle(platform::to_void_cast(x_data));
    dst_memory->set_data_handle(y_data);
K
Krzysztof Binias 已提交
179
  }
180 181

  // push primitive to stream and wait until it's executed
182 183 184 185 186 187
  std::vector<primitive> pipeline;
  pipeline.push_back(*p_fwd);
  stream(stream::kind::eager).submit(pipeline).wait();

  y->set_layout(DataLayout::kMKLDNN);
  y->set_format(GetMKLDNNFormat(*dst_memory));
188 189
}

190 191 192 193
template <typename T>
void eltwise_grad(const framework::ExecutionContext &ctx,
                  mkldnn::algorithm algorithm, const T alpha = 0,
                  const T beta = 0) {
194 195 196
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
  const auto &mkldnn_engine = dev_ctx.GetEngine();

197 198
  const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
199

200 201
  const T *diff_y_data = diff_y->data<T>();
  T *diff_x_data = diff_x->mutable_data<T>(ctx.GetPlace());
202

203
  std::vector<int> diff_dst_tz = framework::vectorize2int(diff_y->dims());
K
Krzysztof Binias 已提交
204

205 206
  auto diff_y_format =
      diff_dst_tz.size() == 2 ? mkldnn::memory::format::nc : diff_y->format();
K
Krzysztof Binias 已提交
207

208
  const std::string key = gethash(diff_dst_tz, algorithm);
K
Krzysztof Binias 已提交
209 210
  const std::string key_src_data =
      key + ctx.op().Input("Out") + "@eltwise_fwd_src_data";
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  const std::string key_src_layout =
      key + ctx.op().Input("Out") + "@eltwise_fwd_src_layout";
  const auto p_src_layout =
      std::static_pointer_cast<memory::format>(dev_ctx.GetBlob(key_src_layout));
  const std::string key_src_mem =
      key + std::to_string(*p_src_layout) + "@eltwise_fwd_src_mem";
  const std::string key_fwd_pd =
      key + std::to_string(*p_src_layout) + "@eltwise_fwd_pd";
  const std::string key_with_layouts =
      key + std::to_string(*p_src_layout) + "-" + std::to_string(diff_y_format);
  const std::string key_diff_src_mem =
      key_with_layouts + "@eltwise_diff_src_mem";
  const std::string key_diff_dst_mem =
      key_with_layouts + "@eltwise_diff_dst_mem";
  const std::string key_grad = key_with_layouts + "@eltwise_grad";

K
Krzysztof Binias 已提交
227 228 229
  const auto p_src_data =
      std::static_pointer_cast<T *>(dev_ctx.GetBlob(key_src_data));

230
  auto src_memory =
K
Krzysztof Binias 已提交
231
      std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_src_mem));
232 233 234 235 236
  PADDLE_ENFORCE(src_memory != nullptr,
                 "Fail to find src_memory in device context");
  src_memory->set_data_handle(*p_src_data.get());

  std::shared_ptr<memory> diff_src_memory;
K
Krzysztof Binias 已提交
237

238
  auto p_grad = std::static_pointer_cast<mkldnn::eltwise_backward>(
K
Krzysztof Binias 已提交
239 240 241
      dev_ctx.GetBlob(key_grad));

  if (p_grad == nullptr) {
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    // create mkldnn memory for input diff_y
    auto diff_dst_md = platform::MKLDNNMemDesc(
        diff_dst_tz, platform::MKLDNNGetDataType<T>(), diff_y_format);
    auto diff_dst_memory = std::shared_ptr<memory>(
        new memory({diff_dst_md, mkldnn_engine}, to_void_cast(diff_y_data)));
    dev_ctx.SetBlob(key_diff_dst_mem, diff_dst_memory);

    // retrieve eltwise primitive desc from device context
    auto forward_pd =
        std::static_pointer_cast<mkldnn::eltwise_forward::primitive_desc>(
            dev_ctx.GetBlob(key_fwd_pd));
    PADDLE_ENFORCE(forward_pd != nullptr,
                   "Fail to find eltwise_fwd_pd in device context");

    // ceate primitive descriptor for activation backward
    auto backward_desc = mkldnn::eltwise_backward::desc(
        algorithm, diff_dst_memory->get_primitive_desc().desc(),
        src_memory->get_primitive_desc().desc(), alpha, beta);
    auto backward_pd = mkldnn::eltwise_backward::primitive_desc(
        backward_desc, mkldnn_engine, *forward_pd);

    // create mkldnn memory for output diff_src
    diff_src_memory = std::make_shared<memory>(
        backward_pd.diff_src_primitive_desc(), diff_x_data);
    dev_ctx.SetBlob(key_diff_src_mem, diff_src_memory);

    // create activation backward primitive
K
Krzysztof Binias 已提交
269
    p_grad = std::make_shared<mkldnn::eltwise_backward>(
270 271
        backward_pd, *src_memory, *diff_dst_memory, *diff_src_memory);
    dev_ctx.SetBlob(key_grad, p_grad);
K
Krzysztof Binias 已提交
272 273
  } else {
    // primitives already exist
274
    diff_src_memory = std::static_pointer_cast<mkldnn::memory>(
K
Krzysztof Binias 已提交
275
        dev_ctx.GetBlob(key_diff_src_mem));
276
    auto diff_dst_memory = std::static_pointer_cast<mkldnn::memory>(
K
Krzysztof Binias 已提交
277 278
        dev_ctx.GetBlob(key_diff_dst_mem));

279 280 281 282
    diff_src_memory->set_data_handle(
        platform::to_void_reinterpret_cast(diff_x_data));
    diff_dst_memory->set_data_handle(
        platform::to_void_reinterpret_cast(diff_y_data));
K
Krzysztof Binias 已提交
283
  }
284 285

  // push primitive to stream and wait until it's executed
286 287 288 289 290 291
  std::vector<primitive> pipeline;
  pipeline.push_back(*p_grad);
  stream(stream::kind::eager).submit(pipeline).wait();

  diff_x->set_layout(DataLayout::kMKLDNN);
  diff_x->set_format(GetMKLDNNFormat(*diff_src_memory));
292 293 294 295
}

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationFunc : public BaseActivationFunctor<T> {
296
  void operator()(const framework::ExecutionContext &ctx) const {
297 298 299 300 301 302
    eltwise_forward<T>(ctx, algorithm);
  }
};

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationGradFunc : public BaseActivationFunctor<T> {
303
  void operator()(const framework::ExecutionContext &ctx) const {
304 305 306 307 308
    eltwise_grad<T>(ctx, algorithm);
  }
};

template <typename T>
T
tensor-tang 已提交
309
using ReluMKLDNNFunctor =
310 311 312
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_relu>;

template <typename T>
T
tensor-tang 已提交
313
using TanhMKLDNNFunctor =
314 315 316
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
T
tensor-tang 已提交
317
using SqrtMKLDNNFunctor =
318 319 320
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
T
tensor-tang 已提交
321
using AbsMKLDNNFunctor =
322 323 324
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_abs>;

template <typename T>
T
tensor-tang 已提交
325
using ReluMKLDNNGradFunctor =
326 327 328
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_relu>;

template <typename T>
T
tensor-tang 已提交
329
using TanhMKLDNNGradFunctor =
330 331 332
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
T
tensor-tang 已提交
333
using SqrtMKLDNNGradFunctor =
334 335 336
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
T
tensor-tang 已提交
337
using AbsMKLDNNGradFunctor =
338 339 340 341 342 343 344 345 346 347 348 349 350
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_abs>;
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

#define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \
  REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace,       \
                     ops::MKLDNNActivationKernel<ops::functor<float>>);    \
  REGISTER_OP_KERNEL(                                                      \
      act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace,               \
      ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>);

K
Krzysztof Binias 已提交
351
#define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro)            \
T
tensor-tang 已提交
352 353 354 355
  __macro(relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor); \
  __macro(tanh, TanhMKLDNNFunctor, TanhMKLDNNGradFunctor); \
  __macro(sqrt, SqrtMKLDNNFunctor, SqrtMKLDNNGradFunctor); \
  __macro(abs, AbsMKLDNNFunctor, AbsMKLDNNGradFunctor);
356 357

FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);