test_CRFLayerGrad.cpp 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include "paddle/gserver/layers/DataLayer.h"
#include "paddle/trainer/Trainer.h"
#include "paddle/gserver/layers/LinearChainCRF.h"
#include "ModelConfig.pb.h"

#include "TestUtil.h"
#include "LayerGradUtil.h"

using namespace paddle; // NOLINT

P_DECLARE_bool(use_gpu);
P_DECLARE_int32(gpu_id);
P_DECLARE_double(checkgrad_eps);
P_DECLARE_bool(thread_local_rand_use_global_seed);
P_DECLARE_bool(prev_batch_state);

static inline bool getNextSequence(std::vector<int>& seq, int numClasses) {
  for (auto& v : seq) {
    if (++v < numClasses) {
      return true;
    }
    v = 0;
  }
  return false;
}

// log(exp(x) + exp(y))
static inline real logSum(real x, real y) {
  real maxValue = std::max(x, y);
  if (std::isinf(maxValue)) {
    return -std::numeric_limits<real>::infinity();
  } else {
    return maxValue + log(exp(x - maxValue) + exp(y - maxValue));
  }
}

static inline std::vector<int> genRandLabels(int numClasses, int length) {
  std::vector<int> labels(length);
  for (int i = 0; i < length; ++i) {
    labels[i] = rand() % numClasses;  // NOLINT
  }
  return labels;
}

TEST(CRFLayer, cost) {
  const int numClasses = 4;
  CpuVector para(numClasses * (numClasses + 2));
  real* a = para.getData();
  real* b = para.getData() + numClasses;
  real* w = para.getData() + 2 * numClasses;
  LinearChainCRF crf(4, para.getData());
  for (int length : {1, 2, 3, 10}) {
    for (int tries = 0; tries < 10; ++tries) {
      CpuMatrix x(length, numClasses);
      x.randomizeUniform();
      para.randnorm(0, 2);

      std::vector<int> goldenLabels = genRandLabels(numClasses, length);

      real cost = crf.forward(x.getData(), goldenLabels.data(), length);

      real logZ = -std::numeric_limits<real>::infinity();
      real logNominator = -std::numeric_limits<real>::infinity();
      std::vector<int> testResult(length, 0);
      do {
        real score = a[testResult.front()];
        score += x.getElement(0, testResult.front());
        for (int k = 1; k < length; ++k) {
          score += x.getElement(k, testResult[k]) +
                   w[numClasses * testResult[k - 1] + testResult[k]];
        }
        score += b[testResult.back()];
        logZ = logSum(logZ, score);

        if (goldenLabels == testResult) {
          logNominator = score;
        }
      } while (getNextSequence(testResult, numClasses));

      real trueCost = -logNominator + logZ;

      real diff = fabs(trueCost - cost);
      diff /= fabs(cost) < fabs(trueCost) ? fabs(cost) : fabs(trueCost);
      VLOG(1) << "cost=" << cost << " trueCost=" << trueCost
        << " diff=" << diff << std::endl;
      if (typeid(real) == typeid(double)) {  // NOLINT
        EXPECT_LE(diff, 1e-10);
      } else {
        EXPECT_LE(diff, 5e-3);
      }
    }
  }
}

inline real epsilon() {
  return typeid(real) == typeid(double) ? 1e-10 : 0.05;
}

TestConfig initTestConfig(size_t numClasses, bool withWeight) {
  TestConfig config;
  config.layerConfig.set_type("crf");
  config.layerConfig.set_size(numClasses);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0",
      numClasses, numClasses * (numClasses + 2)});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_SEQUENCE_LABEL, "layer_label",
      numClasses, 0});
  config.layerConfig.add_inputs();

  if (withWeight) {
    config.inputDefs.push_back({INPUT_DENSE_DIM_DATA, "layer_weight",
        1, 0});
    config.layerConfig.add_inputs();
  }

  return config;
}

TEST(Layer, CRFLayer) {
  size_t numClasses = 10;
  for (int tries = 0; tries < 5; ++tries) {
    TestConfig config = initTestConfig(numClasses, /* withWeight= */ false);
    for (int length : {1, 3, 100}) {
      // Not support GPU now
      testLayerGrad(config,
                    "crf",
                    length,
                    /* trans= */ false,
                    /* useGpu= */ false,
                    /* useWeight= */ false,
                    epsilon());
    }
  }
}

TEST(Layer, CRFLayerUseWeight) {
  size_t numClasses = 10;
  for (int tries = 0; tries < 5; ++tries) {
    TestConfig config = initTestConfig(numClasses, /* withWeight= */ true);
    for (int length : {1, 3, 100}) {
      // Not support GPU now
      testLayerGrad(config,
                    "crf",
                    length,
                    /* trans= */ false,
                    /* useGpu= */ false,
                    /* useWeight= */ false,
                    epsilon());
    }
  }
}

int main(int argc, char** argv) {
  initMain(argc, argv);
  hl_start();
  hl_init(FLAGS_gpu_id);
  FLAGS_thread_local_rand_use_global_seed = true;
  srand(1);
  testing::InitGoogleTest(&argc, argv);
  return RUN_ALL_TESTS();
}