refer.h 15.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#pragma once
16 17 18

#include <cmath>
#include <limits>
19
#include <string>
20
#include "paddle/fluid/operators/jit/helper.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/operators/jit/kernel_base.h"
T
tensor-tang 已提交
22 23 24 25
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace operators {
T
tensor-tang 已提交
26
namespace jit {
T
tensor-tang 已提交
27 28
namespace refer {

29
// Refer code only focus on correctness
T
tensor-tang 已提交
30 31 32 33 34 35 36
template <typename T>
void VMul(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
  }
}

T
tensor-tang 已提交
37
template <typename T>
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
void VAdd(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
  }
}

template <typename T>
void VAddRelu(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
    z[i] = z[i] > 0 ? z[i] : 0;
  }
}

template <typename T>
void VSub(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] - y[i];
  }
}

template <typename T>
void VScal(const T* a, const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = a[0] * x[i];
  }
}

66 67 68 69 70 71 72
template <typename T>
void VAddBias(const T* a, const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = a[0] + x[i];
  }
}

73 74 75 76 77
template <typename T>
void VCopy(const T* x, T* y, int n) {
  std::memcpy(y, x, n * sizeof(T));
}

78 79 80 81 82 83 84 85 86
// x shape: (x_len)
// y shape: (h, x_len)
template <typename T>
void VBroadcast(const T* x, T* y, int64_t y_h, int64_t x_len) {
  for (int64_t h = 0; h < y_h; ++h) {
    VCopy(x, y + h * x_len, x_len);
  }
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100
template <typename T>
void VRelu(const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] > 0 ? x[i] : 0;
  }
}

template <typename T>
inline void VIdentity(const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i];
  }
}

T
tensor-tang 已提交
101 102 103 104 105 106 107
template <typename T>
inline void VSquare(const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] * x[i];
  }
}

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
template <typename T>
void VExp(const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
}

template <typename T>
void VSigmoid(const T* x, T* y, int n) {
  // y = 1 / (1 + e^-x)
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
    T tmp = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = static_cast<T>(1) / (static_cast<T>(1) + std::exp(-tmp));
  }
}

template <typename T>
void VTanh(const T* x, T* y, int n) {
  // y = 2 * sigmoid(2x) - 1
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(2) * x[i];
  }
  VSigmoid(y, y, n);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(2) * y[i] - static_cast<T>(1);
  }
}

T
tensor-tang 已提交
138 139
template <typename T>
void (*getActFunc(KernelType type))(const T*, T*, int) {  // NOLINT
T
tensor-tang 已提交
140
  if (type == kVSigmoid) {
T
tensor-tang 已提交
141
    return VSigmoid<T>;
T
tensor-tang 已提交
142
  } else if (type == kVRelu) {
T
tensor-tang 已提交
143
    return VRelu<T>;
T
tensor-tang 已提交
144
  } else if (type == kVTanh) {
T
tensor-tang 已提交
145
    return VTanh<T>;
T
tensor-tang 已提交
146
  } else if (type == kVIdentity) {
T
tensor-tang 已提交
147 148 149 150 151 152
    return VIdentity<T>;
  }
  PADDLE_THROW("Not support type: %s", type);
  return nullptr;
}

153 154
// TODO(TJ): add refer gemm and make LSTM kernels combine as same GRU kernels

T
tensor-tang 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
// compute ct and ht
template <typename T>
void LSTMCtHt(lstm_t* step, const lstm_attr_t* attr) {
  T* gates = reinterpret_cast<T*>(step->gates);
  const T* ct_1 = reinterpret_cast<const T*>(step->ct_1);
  T* ct = reinterpret_cast<T*>(step->ct);
  T* ht = reinterpret_cast<T*>(step->ht);
  const T* wp = reinterpret_cast<const T*>(step->wp);
  T* checked = reinterpret_cast<T*>(step->checked);
  auto act_gate = getActFunc<T>(attr->act_gate);
  auto act_cand = getActFunc<T>(attr->act_cand);
  auto act_cell = getActFunc<T>(attr->act_cell);
  int d = attr->d;
  int d2 = d * 2;
  int d3 = d * 3;
  // gates: W_ch, W_ih, W_fh, W_oh
  if (attr->use_peephole) {
    VMul(wp, ct_1, checked, d);
    VMul(wp + d, ct_1, checked + d, d);
    VAdd(checked, gates + d, gates + d, d2);
    act_gate(gates + d, gates + d, d2);
  } else {
    act_gate(gates + d, gates + d, d3);
  }

  // C_t = C_t-1 * fgated + cand_gated * igated
  act_cand(gates, gates, d);
  VMul(gates, gates + d, gates + d, d);
  VMul(ct_1, gates + d2, gates + d2, d);
  VAdd(gates + d, gates + d2, ct, d);

  if (attr->use_peephole) {
    // get ogated
    VMul(wp + d2, ct, gates + d, d);
    VAdd(gates + d, gates + d3, gates + d3, d);
    act_gate(gates + d3, gates + d3, d);
  }
  // H_t = act_cell(C_t) * ogated
  act_cell(ct, gates + d2, d);
  VMul(gates + d2, gates + d3, ht, d);
}

// compute c1 and h1 without c0 or h0
template <typename T>
void LSTMC1H1(lstm_t* step, const lstm_attr_t* attr) {
  T* gates = reinterpret_cast<T*>(step->gates);
  T* ct = reinterpret_cast<T*>(step->ct);
  T* ht = reinterpret_cast<T*>(step->ht);
  auto act_gate = getActFunc<T>(attr->act_gate);
  auto act_cand = getActFunc<T>(attr->act_cand);
  auto act_cell = getActFunc<T>(attr->act_cell);
  int d = attr->d;
  int d2 = d * 2;
  int d3 = d * 3;
  /* C_t = igated * cgated*/
  act_gate(gates + d, gates + d, d);
  act_cand(gates, gates, d);
  VMul(gates, gates + d, ct, d);
  if (attr->use_peephole) {
    // get outgated, put W_oc * C_t on igated
    const T* wp = reinterpret_cast<const T*>(step->wp);
    VMul(wp + d2, ct, gates + d, d);
    VAdd(gates + d, gates + d3, gates + d3, d);
  }
  /* H_t = act_cell(C_t) * ogated */
  act_gate(gates + d3, gates + d3, d);
  act_cell(ct, gates + d2, d);
  VMul(gates + d2, gates + d3, ht, d);
}

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
// compute h1 without h0
template <typename T>
void GRUH1(gru_t* step, const gru_attr_t* attr) {
  T* gates = reinterpret_cast<T*>(step->gates);
  T* ht = reinterpret_cast<T*>(step->ht);
  auto act_gate = getActFunc<T>(attr->act_gate);
  auto act_cand = getActFunc<T>(attr->act_cand);
  int d = attr->d;
  int d2 = d * 2;
  act_gate(gates, gates, d);
  act_cand(gates + d2, gates + d2, d);
  VMul(gates, gates + d2, ht, d);
}

// compute the first part of GRU: ht = act_gate(r) * ht_1
template <typename T>
void GRUHtPart1(gru_t* step, const gru_attr_t* attr) {
  // W: {W_update, W_reset; W_state}
  T* gates = reinterpret_cast<T*>(step->gates);
  T* ht = reinterpret_cast<T*>(step->ht);
  const T* ht_1 = reinterpret_cast<const T*>(step->ht_1);
  auto act_gate = getActFunc<T>(attr->act_gate);
  act_gate(gates + attr->d, gates + attr->d, attr->d);
  VMul(ht_1, gates + attr->d, ht, attr->d);
}

// compute the second part of GRU:
// ht = act_gate(u) * act_cand(s) + (1-act_gate(u)) * ht_1
template <typename T>
void GRUHtPart2(gru_t* step, const gru_attr_t* attr) {
  T* gates = reinterpret_cast<T*>(step->gates);
  T* ht = reinterpret_cast<T*>(step->ht);
  const T* ht_1 = reinterpret_cast<const T*>(step->ht_1);
  auto act_gate = getActFunc<T>(attr->act_gate);
  auto act_cand = getActFunc<T>(attr->act_cand);
  int d = attr->d;
  T* y = gates + d * 2;
  act_gate(gates, gates, d);
  act_cand(y, y, d);
  // out = zt*ht~ + (1-zt)*ht_1
  for (int i = 0; i < d; ++i) {
    ht[i] = gates[i] * y[i] + (static_cast<T>(1) - gates[i]) * ht_1[i];
  }
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
template <typename T>
void CRFDecoding(const int seq_len, const T* x, const T* w, T* alpha,
                 int* track, int right) {
  constexpr int state_trans_base_idx = 2;
  for (int i = 0; i < right; ++i) {
    alpha[i] = w[i] + x[i];
  }
  for (int k = 1; k < seq_len; ++k) {
    for (int i = 0; i < right; ++i) {
      T max_score = -std::numeric_limits<T>::max();
      int max_j = 0;
      for (int j = 0; j < right; ++j) {
        T score = alpha[(k - 1) * right + j] +
                  w[(j + state_trans_base_idx) * right + i];
        if (score > max_score) {
          max_score = score;
          max_j = j;
        }
      }
      alpha[k * right + i] = max_score + x[k * right + i];
      track[k * right + i] = max_j;
    }
  }
}

template <typename T>
void LayerNorm(T* x, T* out, T* mean, T* var, const T* scale, const T* bias,
               int height, const float epsilon, int right) {
  // get mean
  for (int i = 0; i < height; i++) {
    T sum = 0.0;
    int offset = i * right;
    for (int j = 0; j < right; j++) {
      sum += x[offset + j];
    }
    mean[i] = sum / right;
  }

  // get variance
  for (int i = 0; i < height; i++) {
    T sum = 0.0;
    int offset = i * right;
    for (int j = 0; j < right; j++) {
      sum += (x[offset + j] - mean[i]) * (x[offset + j] - mean[i]);
    }
    var[i] = sum / right;
  }

  for (int i = 0; i < height; i++) {
    int offset = i * right;
    T sqrt_var = std::sqrt(var[i] + (T)epsilon);
    for (int j = 0; j < right; j++) {
      out[offset + j] = (x[offset + j] - mean[i]) / sqrt_var;
    }
  }
  if (scale) {
    for (int i = 0; i < height; i++) {
      int offset = i * right;
      for (int j = 0; j < right; j++) {
        out[offset + j] *= scale[j];
      }
    }
  }

  if (bias) {
    for (int i = 0; i < height; i++) {
      int offset = i * right;
      for (int j = 0; j < right; j++) {
        out[offset + j] += bias[j];
      }
    }
  }
}

T
tensor-tang 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356
template <typename T>
void NCHW16CMulNC(const T* x, const T* y, T* z, int height, int width) {
  int offset = 0;
  for (int h = 0; h < height; ++h) {
    for (int w = 0; w < width; ++w) {
      for (int i = 0; i < 16; ++i) {
        z[i + offset] = y[i] * x[i + offset];
      }
      offset += ZMM_FLOAT_BLOCK;
    }
  }
}

T
tensor-tang 已提交
357 358 359 360 361 362 363 364 365 366 367
template <typename T>
void SeqPool(const T* x, T* y, const seq_pool_attr_t* attr) {
  for (int w = 0; w < attr->w; ++w) {
    const T* src = x + w;
    T* dst = y + w;
    *dst = static_cast<T>(0);
    for (int h = 0; h < attr->h; ++h) {
      *dst = *dst + *src;
      src += attr->w;
    }
  }
368 369 370 371 372 373 374 375 376
  if (attr->type == SeqPoolType::kAvg || attr->type == SeqPoolType::kSqrt) {
    T scalar = static_cast<T>(1);
    if (attr->type == SeqPoolType::kAvg) {
      scalar = scalar / static_cast<T>(attr->h);
    } else {
      scalar = scalar / std::sqrt(static_cast<T>(attr->h));
    }
    VScal<T>(&scalar, y, y, attr->w);
  }
T
tensor-tang 已提交
377 378
}

T
tensor-tang 已提交
379 380
// A(M,K) * B(K,N) = C(M,N)
template <typename T>
381 382 383 384
void MatMul(const T* A, const T* B, T* C, const matmul_attr_t* attr) {
  int M = attr->m;
  int N = attr->n;
  int K = attr->k;
385 386 387 388 389
  for (int m = 0; m < M; ++m) {
    const T* pa = A + m * K;
    T* pc = C + m * N;
    for (int n = 0; n < N; ++n) {
      const T* pb = B + n;
390 391 392
      pc[n] = pa[0] * pb[0];
      for (int k = 1; k < K; ++k) {
        pc[n] += pa[k] * pb[k * N];
393 394 395 396
      }
    }
  }
}
T
tensor-tang 已提交
397

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
template <typename T>
void HMax(const T* x, T* res, int n) {
  res[0] = x[0];
  for (int i = 1; i < n; ++i) {
    res[0] = res[0] < x[i] ? x[i] : res[0];
  }
}

template <typename T>
void HSum(const T* x, T* res, int n) {
  res[0] = x[0];
  for (int i = 1; i < n; ++i) {
    res[0] += x[i];
  }
}

// y = e^(x - max(x))
// y = y / sum(y)
template <typename T>
void Softmax(const T* x, T* y, int n, int bs = 1) {
  for (int i = 0; i < bs; ++i) {
    T scalar;
    HMax(x, &scalar, n);
    scalar = static_cast<T>(0) - scalar;
    VAddBias(&scalar, x, y, n);  // x - max
    VExp(y, y, n);
    HSum(y, &scalar, n);
    scalar = static_cast<T>(1) / scalar;
    VScal(&scalar, y, y, n);
    x += n;
    y += n;
  }
}

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
// embedding seq pool
// table is a matrix with (tbl_h, tbl_w)
// idx is a matrix with (idx_h, idx_w)
// output is a vector with length tbl_w * idx_w
template <typename T>
void EmbSeqPool(const T* table, const int64_t* idx, T* out,
                const emb_seq_pool_attr_t* attr) {
  PADDLE_ENFORCE_EQ(attr->table_width * attr->index_width, attr->out_width);

  auto check_idx_value_valid = [&](int64_t i) {
    PADDLE_ENFORCE_LT(idx[i], attr->table_height, "idx value: %d, i: %d",
                      idx[i], i);
    PADDLE_ENFORCE_GE(idx[i], 0, "idx value: %d, i: %d", idx[i], i);
  };

  for (int64_t w = 0; w != attr->index_width; ++w) {
    check_idx_value_valid(w);
    std::memcpy(out + w * attr->table_width, table + idx[w] * attr->table_width,
                attr->table_width * sizeof(T));
  }

  for (int64_t h = 1; h < attr->index_height; ++h) {
    for (int64_t w = 0; w < attr->index_width; ++w) {
      int64_t i = h * attr->index_width + w;
      check_idx_value_valid(i);
      VAdd(table + idx[i] * attr->table_width, out + w * attr->table_width,
           out + w * attr->table_width, attr->table_width);
    }
  }
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
// SGD algorithm:
// lr is pointor of learning rate scalar
// param is an input matrix with (param_h, param_w)
// grad is an input matrix with (grad_h, grad_w), here grad_w == param_w
// selected_rows is a vectot<int64_t> with size selected_rows_size( <= grad_h )
// out is an output matrix with (param_h, param_w)
//
// support both regular and sparse grad
// regular SGD: out[:] = param[:] - lr[0] * grad[:];
// sparse SGD: out[rows[i]][:] = param[rows[i]][:] - lr[0] * grad[i][:]
//
// Note: when use sparse SGD, and if out != param,
// the out rows which are not selected have not beed changed, which maybe empty
template <typename T>
void Sgd(const T* lr, const T* param, const T* grad, const int64_t* rows,
         T* out, const sgd_attr_t* attr) {
  PADDLE_ENFORCE_EQ(attr->param_width, attr->grad_width);
  PADDLE_ENFORCE_LE(attr->selected_rows_size, attr->grad_height);
  for (int64_t i = 0; i < attr->selected_rows_size; ++i) {
    auto h_idx = rows[i];
    PADDLE_ENFORCE_LT(h_idx, attr->param_height);
    PADDLE_ENFORCE_GE(h_idx, 0);
    for (int64_t j = 0; j < attr->grad_width; ++j) {
      out[h_idx * attr->grad_width + j] =
          param[h_idx * attr->grad_width + j] -
          lr[0] * grad[i * attr->grad_width + j];
    }
  }
}

493 494 495 496 497
#define DECLARE_REFER_KERNEL(name)                          \
  template <typename T>                                     \
  class name##Kernel : public ReferKernel<name##Tuple<T>> { \
   public:                                                  \
    name##Kernel() { this->func = name<T>; }                \
498 499
  }

500
// const T* x, const T* y, T* z, int n
501 502 503 504
DECLARE_REFER_KERNEL(VMul);
DECLARE_REFER_KERNEL(VAdd);
DECLARE_REFER_KERNEL(VAddRelu);
DECLARE_REFER_KERNEL(VSub);
505

506
// const T* a, const T* x, T* y, int n
507 508
DECLARE_REFER_KERNEL(VScal);
DECLARE_REFER_KERNEL(VAddBias);
509

510
// const T* x, T* y, int n
511 512 513 514 515 516 517
DECLARE_REFER_KERNEL(VRelu);
DECLARE_REFER_KERNEL(VIdentity);
DECLARE_REFER_KERNEL(VExp);
DECLARE_REFER_KERNEL(VSigmoid);
DECLARE_REFER_KERNEL(VTanh);
DECLARE_REFER_KERNEL(VSquare);
DECLARE_REFER_KERNEL(VCopy);
518

519
// lstm_t*, const lstm_attr_t*
520 521
DECLARE_REFER_KERNEL(LSTMCtHt);
DECLARE_REFER_KERNEL(LSTMC1H1);
T
tensor-tang 已提交
522

523
// gru_t*, const gru_attr_t*
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
DECLARE_REFER_KERNEL(GRUH1);
DECLARE_REFER_KERNEL(GRUHtPart1);
DECLARE_REFER_KERNEL(GRUHtPart2);

DECLARE_REFER_KERNEL(HMax);
DECLARE_REFER_KERNEL(HSum);

// others
DECLARE_REFER_KERNEL(CRFDecoding);
DECLARE_REFER_KERNEL(LayerNorm);
DECLARE_REFER_KERNEL(NCHW16CMulNC);
DECLARE_REFER_KERNEL(SeqPool);
DECLARE_REFER_KERNEL(MatMul);
DECLARE_REFER_KERNEL(Softmax);
DECLARE_REFER_KERNEL(EmbSeqPool);
DECLARE_REFER_KERNEL(Sgd);
DECLARE_REFER_KERNEL(VBroadcast);
541

542
#undef DECLARE_REFER_KERNEL
T
tensor-tang 已提交
543

T
tensor-tang 已提交
544
}  // namespace refer
T
tensor-tang 已提交
545
}  // namespace jit
T
tensor-tang 已提交
546 547
}  // namespace operators
}  // namespace paddle