kernel_base.h 9.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#pragma once
16
#include <cstdint>
17
#include "paddle/fluid/operators/jit/macro.h"
T
tensor-tang 已提交
18 19 20 21
#include "paddle/fluid/platform/macros.h"

namespace paddle {
namespace operators {
T
tensor-tang 已提交
22
namespace jit {
T
tensor-tang 已提交
23

24
typedef enum {
T
tensor-tang 已提交
25
  kNone = 0,
26 27 28
  // sort by alphabet
  kCRFDecoding = 1,
  kEmbSeqPool = 2,
T
tensor-tang 已提交
29 30 31
  kGRUH1,
  kGRUHtPart1,
  kGRUHtPart2,
32 33 34 35
  kHSum,  // horizontal max
  kHMax,  // horizontal sum
  kLSTMCtHt,
  kLSTMC1H1,
T
tensor-tang 已提交
36
  kLayerNorm,
37
  kMatMul,
T
tensor-tang 已提交
38
  kNCHW16CMulNC,
T
tensor-tang 已提交
39
  kSeqPool,
40
  kSoftmax,
41 42 43
  kVAdd,
  kVAddBias,
  kVAddRelu,
44
  kVBroadcast,
45
  kVCopy,
46 47 48 49 50
  kVExp,
  kVIdentity,
  kVMul,
  kVRelu,
  kVScal,
51
  kSgd,
52 53 54 55
  kVSigmoid,
  kVSquare,
  kVSub,
  kVTanh,
56
} KernelType;
T
tensor-tang 已提交
57

58 59
typedef enum {
  kNonePoolType = 0,
T
tensor-tang 已提交
60
  kSum = 1,
61 62 63 64
  kAvg,
  kSqrt,
} SeqPoolType;

65
// x, y, z, n
T
tensor-tang 已提交
66
template <typename T>
67
struct XYZNTuple {
T
tensor-tang 已提交
68 69 70 71 72
  typedef T data_type;
  typedef int attr_type;
  typedef void (*func_type)(const T*, const T*, T*, int);
};

73
// a, x, y, n
74
template <typename T>
75
struct AXYNTuple : public XYZNTuple<T> {};
76

77
// x, y, n
78
template <typename T>
79
struct XYNTuple {
80 81 82 83 84
  typedef T data_type;
  typedef int attr_type;
  typedef void (*func_type)(const T*, T*, int);
};

85
// x, returned value, n
86
template <typename T>
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
struct XRNTuple : public XYNTuple<T> {};

#define DECLARE_KERNELTUPLE(kernel_tuple, type)        \
  template <typename T>                                \
  struct type##Tuple : public kernel_tuple<T> {        \
    static constexpr KernelType kernel_type = k##type; \
  }

// Tuple should be corresponding to the KernelType
DECLARE_KERNELTUPLE(XYZNTuple, VMul);
DECLARE_KERNELTUPLE(XYZNTuple, VAdd);
DECLARE_KERNELTUPLE(XYZNTuple, VAddRelu);
DECLARE_KERNELTUPLE(XYZNTuple, VSub);

DECLARE_KERNELTUPLE(AXYNTuple, VScal);
DECLARE_KERNELTUPLE(AXYNTuple, VAddBias);

DECLARE_KERNELTUPLE(XYNTuple, VRelu);
DECLARE_KERNELTUPLE(XYNTuple, VIdentity);
DECLARE_KERNELTUPLE(XYNTuple, VSquare);
DECLARE_KERNELTUPLE(XYNTuple, VExp);
DECLARE_KERNELTUPLE(XYNTuple, VSigmoid);
DECLARE_KERNELTUPLE(XYNTuple, VTanh);
DECLARE_KERNELTUPLE(XYNTuple, VCopy);

DECLARE_KERNELTUPLE(XRNTuple, HMax);
DECLARE_KERNELTUPLE(XRNTuple, HSum);
114

T
tensor-tang 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
typedef struct {
  void* gates;  // gates: x_ch, x_ih, x_fh, x_oh
  const void* ct_1;
  void* ct;
  void* ht;
  /* weight_peephole and checked data are only used in peephole*/
  const void* wp{nullptr};  //  W_ic, W_fc, W_oc
  void* checked{nullptr};   // size: 2 * d
} lstm_t;

typedef struct {
  void* gates;  // gates: {x_update, x_reset; x_state}
  const void* ht_1;
  void* ht;
} gru_t;

struct rnn_attr_s {
  int d;
  KernelType act_gate, act_cand;
  rnn_attr_s() = default;
T
tensor-tang 已提交
135
  explicit rnn_attr_s(int _d, KernelType _act_gate, KernelType _act_cand)
T
tensor-tang 已提交
136 137 138 139 140 141 142
      : d(_d), act_gate(_act_gate), act_cand(_act_cand) {}
};

struct lstm_attr_s : public rnn_attr_s {
  bool use_peephole;
  KernelType act_cell;
  lstm_attr_s() = default;
T
tensor-tang 已提交
143 144
  explicit lstm_attr_s(int _d, KernelType _act_gate, KernelType _act_cand,
                       KernelType _act_cell, bool _use_peephole = false)
T
tensor-tang 已提交
145 146 147 148 149 150 151 152 153
      : rnn_attr_s(_d, _act_gate, _act_cand),
        use_peephole(_use_peephole),
        act_cell(_act_cell) {}
};

typedef struct rnn_attr_s gru_attr_t;
typedef struct lstm_attr_s lstm_attr_t;

template <typename T>
154
struct LSTMTuple {
T
tensor-tang 已提交
155 156 157 158 159
  typedef T data_type;
  typedef lstm_attr_t attr_type;
  typedef void (*func_type)(lstm_t*, const lstm_attr_t*);
};

160
template <typename T>
161
struct GRUTuple {
162 163 164 165 166
  typedef T data_type;
  typedef gru_attr_t attr_type;
  typedef void (*func_type)(gru_t*, const gru_attr_t*);
};

167 168 169 170 171 172 173 174 175
DECLARE_KERNELTUPLE(LSTMTuple, LSTMCtHt);
DECLARE_KERNELTUPLE(LSTMTuple, LSTMC1H1);

DECLARE_KERNELTUPLE(GRUTuple, GRUH1);
DECLARE_KERNELTUPLE(GRUTuple, GRUHtPart1);
DECLARE_KERNELTUPLE(GRUTuple, GRUHtPart2);

#undef DECLARE_KERNELTUPLE

176
template <typename T>
177 178
struct VBroadcastTuple {
  static constexpr KernelType kernel_type = kVBroadcast;
179 180 181 182 183
  typedef T data_type;
  typedef int64_t attr_type;
  typedef void (*func_type)(const T*, T*, int64_t, int64_t);
};

184
typedef struct seq_pool_attr_s {
T
tensor-tang 已提交
185
  int h, w;  // h should always be the first one
T
tensor-tang 已提交
186
  SeqPoolType type;
187
  seq_pool_attr_s() = default;
T
tensor-tang 已提交
188
  explicit seq_pool_attr_s(int width, SeqPoolType pool_type, int height = 1)
189
      : h(height), w(width), type(pool_type) {}
T
tensor-tang 已提交
190 191 192
} seq_pool_attr_t;

template <typename T>
193 194
struct SeqPoolTuple {
  static constexpr KernelType kernel_type = kSeqPool;
T
tensor-tang 已提交
195 196 197 198 199
  typedef T data_type;
  typedef seq_pool_attr_t attr_type;
  typedef void (*func_type)(const T*, T*, const seq_pool_attr_t*);
};

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
typedef struct emb_seq_pool_attr_s {
  int64_t table_height, table_width;
  int64_t index_height, index_width;
  int64_t out_width;
  SeqPoolType pool_type;
  emb_seq_pool_attr_s() = default;
  explicit emb_seq_pool_attr_s(int64_t tbl_height, int64_t tbl_width,
                               int64_t idx_height, int64_t idx_width,
                               int64_t output_width,
                               SeqPoolType seqpool_type = SeqPoolType::kSum)
      : table_height(tbl_height),
        table_width(tbl_width),
        index_height(idx_height),
        index_width(idx_width),
        out_width(output_width),
        pool_type(seqpool_type) {}
} emb_seq_pool_attr_t;

template <typename T>
219 220
struct EmbSeqPoolTuple {
  static constexpr KernelType kernel_type = kEmbSeqPool;
221 222 223 224 225 226
  typedef T data_type;
  typedef emb_seq_pool_attr_t attr_type;
  typedef void (*func_type)(const T*, const int64_t*, T*,
                            const emb_seq_pool_attr_t*);
};

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
typedef struct sgd_attr_s {
  int64_t param_height, param_width;
  int64_t grad_height, grad_width;
  int64_t selected_rows_size;
  sgd_attr_s() = default;
  explicit sgd_attr_s(int64_t param_h, int64_t param_w, int64_t grad_h,
                      int64_t grad_w, int64_t selected_rows_sz)
      : param_height(param_h),
        param_width(param_w),
        grad_height(grad_h),
        grad_width(grad_w),
        selected_rows_size(selected_rows_sz) {}
} sgd_attr_t;

template <typename T>
242 243
struct SgdTuple {
  static constexpr KernelType kernel_type = kSgd;
244 245 246 247 248 249
  typedef T data_type;
  typedef sgd_attr_t attr_type;
  typedef void (*func_type)(const T*, const T*, const T*, const int64_t*, T*,
                            const sgd_attr_t*);
};

250 251 252 253 254 255 256 257
typedef struct matmul_attr_s {
  int m, n, k;
  void* packed_weight{nullptr};
  matmul_attr_s() = default;
  explicit matmul_attr_s(int m_, int n_, int k_, void* packed_weight_ = nullptr)
      : m(m_), n(n_), k(k_), packed_weight(packed_weight_) {}
} matmul_attr_t;

T
tensor-tang 已提交
258
template <typename T>
259 260
struct MatMulTuple {
  static constexpr KernelType kernel_type = kMatMul;
T
tensor-tang 已提交
261
  typedef T data_type;
262 263
  typedef matmul_attr_t attr_type;
  typedef void (*func_type)(const T*, const T*, T*, const matmul_attr_t*);
T
tensor-tang 已提交
264 265
};

266
template <typename T>
267 268
struct CRFDecodingTuple {
  static constexpr KernelType kernel_type = kCRFDecoding;
269 270 271 272 273 274
  typedef T data_type;
  typedef int attr_type;
  typedef void (*func_type)(const int, const T*, const T*, T*, int*, int);
};

template <typename T>
275 276
struct LayerNormTuple {
  static constexpr KernelType kernel_type = kLayerNorm;
277 278 279 280 281 282
  typedef T data_type;
  typedef int attr_type;
  typedef void (*func_type)(T*, T*, T*, T*, const T*, const T*, int,
                            const float, int);
};

283
template <typename T>
284 285
struct SoftmaxTuple {
  static constexpr KernelType kernel_type = kSoftmax;
286 287 288 289 290
  typedef T data_type;
  typedef int attr_type;
  typedef void (*func_type)(const T*, T*, int, int);
};

T
tensor-tang 已提交
291 292
// nChw16c = nChw16c .* NC
template <typename T>
293 294
struct NCHW16CMulNCTuple {
  static constexpr KernelType kernel_type = kNCHW16CMulNC;
T
tensor-tang 已提交
295 296 297 298 299
  typedef T data_type;
  typedef int attr_type;
  typedef void (*func_type)(const T*, const T*, T*, int, int);
};

T
tensor-tang 已提交
300 301 302 303
// Just for adding to kernel pool without template
class Kernel {
 public:
  Kernel() = default;
T
tensor-tang 已提交
304
  virtual ~Kernel() = default;
305
  virtual const char* ImplType() const = 0;
T
tensor-tang 已提交
306 307 308
  DISABLE_COPY_AND_ASSIGN(Kernel);
};

309
template <typename KernelTuple>
T
tensor-tang 已提交
310
class KernelMore : public Kernel {
311
 public:
312 313 314
  using T = typename KernelTuple::data_type;
  using Func = typename KernelTuple::func_type;
  using Attr = typename KernelTuple::attr_type;
T
tensor-tang 已提交
315
  virtual Func GetFunc() const { return func; }
316 317
  // specify this kernel can be used, means it should not fail if use it.
  virtual bool CanBeUsed(const Attr& attr) const = 0;
T
tensor-tang 已提交
318 319 320 321 322

 protected:
  Func func{nullptr};
};

323 324
template <typename KernelTuple>
class ReferKernel : public KernelMore<KernelTuple> {
T
tensor-tang 已提交
325 326
 public:
  // Refer code can always be used
327
  bool CanBeUsed(const typename KernelTuple::attr_type& attr) const override {
T
tensor-tang 已提交
328 329
    return true;
  }
T
tensor-tang 已提交
330
  const char* ImplType() const override { return "Refer"; }
T
tensor-tang 已提交
331 332
};

T
tensor-tang 已提交
333
}  // namespace jit
T
tensor-tang 已提交
334 335
}  // namespace operators
}  // namespace paddle