process_group_bkcl.py 6.3 KB
Newer Older
J
james 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import sys
17 18 19
import unittest

import numpy as np
J
james 已提交
20 21

import paddle
22
import paddle.distributed as dist
J
james 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
from paddle.fluid.dygraph.parallel import ParallelEnv


def init_process_group(strategy=None):
    nranks = ParallelEnv().nranks
    rank = ParallelEnv().local_rank
    is_master = True if rank == 0 else False
    pg_group = dist.init_parallel_env()

    return pg_group.process_group


class TestProcessGroupFp32(unittest.TestCase):
    def setUp(self):
        paddle.seed(2022)
        random.seed(2022)
        np.random.seed(2022)
        self.config()

    def config(self):
        self.dtype = "float32"
        self.shape = (2, 10, 5)

    def test_create_process_group_bkcl(self):
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        device_id = paddle.distributed.ParallelEnv().dev_id
        paddle.set_device('xpu:%d' % device_id)

        pg = init_process_group()
        sys.stdout.write(
            "rank {}: size {} name {}\n".format(pg.rank(), pg.size(), pg.name())
        )
        sys.stdout.write("rank {}: test new group api ok\n".format(pg.rank()))

        # test allreduce sum
        # rank 0
        x = np.random.random(self.shape).astype(self.dtype)
        tensor_x = paddle.to_tensor(x)
        # rank 1
        y = np.random.random(self.shape).astype(self.dtype)
        tensor_y = paddle.to_tensor(y)

        sum_result = tensor_x + tensor_y
        if pg.rank() == 0:
            task = dist.all_reduce(tensor_x)
            assert np.array_equal(tensor_x, sum_result)
        else:
            task = dist.all_reduce(tensor_y)
            assert np.array_equal(tensor_y, sum_result)

        sys.stdout.write(
            "rank {}: test allreduce sum api ok\n".format(pg.rank())
        )

        # TODO
        # test allreduce max/min/prod

        # test broadcast
        # rank 0
        x = np.random.random(self.shape).astype(self.dtype)
        tensor_x = paddle.to_tensor(x)
        # rank 1
        y = np.random.random(self.shape).astype(self.dtype)
        tensor_y = paddle.to_tensor(y)

        broadcast_result = paddle.assign(tensor_x)
        if pg.rank() == 0:
            # XPU don't support event query by now, so just use sync op here
            task = dist.broadcast(tensor_x, 0)
            paddle.device.xpu.synchronize()
            assert np.array_equal(broadcast_result, tensor_x)
        else:
            task = dist.broadcast(tensor_y, 0)
            paddle.device.xpu.synchronize()
            assert np.array_equal(broadcast_result, tensor_y)

        sys.stdout.write("rank {}: test broadcast api ok\n".format(pg.rank()))

        # test barrier
        # rank 0
        if pg.rank() == 0:
            pg.barrier(device_id)
        # rank 1
        else:
            task = pg.barrier(device_id)
            task.wait()

        sys.stdout.write("rank {}: test barrier api ok\n".format(pg.rank()))

        # test allgather
        # rank 0
        x = np.random.random(self.shape).astype(self.dtype)
        y = np.random.random(self.shape).astype(self.dtype)
        tensor_x = paddle.to_tensor(x)
        tensor_y = paddle.to_tensor(y)
        out_shape = list(self.shape)
        out_shape[0] *= 2
        out = np.random.random(out_shape).astype(self.dtype)
        tensor_out = paddle.to_tensor(out)
        if pg.rank() == 0:
            task = pg.all_gather(tensor_x, tensor_out)
            task.wait()
            paddle.device.xpu.synchronize()
        # rank 1
        else:
            tensor_out_list = [
                paddle.empty_like(tensor_x),
                paddle.empty_like(tensor_x),
            ]
            task = dist.all_gather(tensor_out_list, tensor_y)
            paddle.device.xpu.synchronize()
            tensor_out = paddle.concat(tensor_out_list)
        out_1 = paddle.slice(tensor_out, [0], [0], [out_shape[0] // 2])
        out_2 = paddle.slice(
            tensor_out, [0], [out_shape[0] // 2], [out_shape[0]]
        )
        assert np.array_equal(tensor_x, out_1)
        assert np.array_equal(tensor_y, out_2)
        sys.stdout.write("rank {}: test allgather api ok\n".format(pg.rank()))

        if pg.rank() == 0:
            task = pg.all_gather(tensor_x, tensor_out)
            task.wait()
            paddle.device.xpu.synchronize()
        # rank 1
        else:
            tensor_out_list = []
            task = dist.all_gather(tensor_out_list, tensor_y)
            paddle.device.xpu.synchronize()
            tensor_out = paddle.concat(tensor_out_list)
        out_1 = paddle.slice(tensor_out, [0], [0], [out_shape[0] // 2])
        out_2 = paddle.slice(
            tensor_out, [0], [out_shape[0] // 2], [out_shape[0]]
        )
        assert np.array_equal(tensor_x, out_1)
        assert np.array_equal(tensor_y, out_2)
        sys.stdout.write("rank {}: test allgather api2 ok\n".format(pg.rank()))

        # test Reduce
        # rank 0
        x = np.random.random(self.shape).astype(self.dtype)
        y = np.random.random(self.shape).astype(self.dtype)
        tensor_x = paddle.to_tensor(x)
        tensor_y = paddle.to_tensor(y)
        sum_result = tensor_x + tensor_y
        if pg.rank() == 0:
            task = dist.reduce(tensor_x, 0, sync_op=True)
            paddle.device.xpu.synchronize()
        # rank 1
        else:
            task = dist.reduce(tensor_y, 0, sync_op=False)
            task.wait()
            paddle.device.xpu.synchronize()
        if pg.rank() == 0:
            assert np.array_equal(tensor_x, sum_result)
        sys.stdout.write("rank {}: test reduce sum api ok\n".format(pg.rank()))
J
james 已提交
178

J
james 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

class TestProcessGroupFp16(TestProcessGroupFp32):
    def setUp(self):
        paddle.seed(2022)
        random.seed(2022)
        np.random.seed(2022)
        self.config()

    def config(self):
        self.dtype = "float16"
        self.shape = (4, 20, 20)


if __name__ == "__main__":
    unittest.main()