test_fleet_auto.py 2.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16
import unittest
17

18 19 20
import paddle
import paddle.distributed.fleet as fleet

D
Dong Daxiang 已提交
21 22
paddle.enable_static()

23 24 25 26 27 28

class TestDistributedStrategyAuto(unittest.TestCase):
    def setUp(self):
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
29 30 31
        os.environ[
            "PADDLE_PSERVERS_IP_PORT_LIST"
        ] = "127.0.0.1:36001,127.0.0.2:36001"
32 33 34

    def test_distributed_strategy_auto(self):
        fleet.init(is_collective=True)
35 36 37
        input_x = paddle.fluid.layers.data(
            name="x", shape=[32], dtype='float32'
        )
38 39 40 41 42
        input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')

        fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
        fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
        prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax')
43 44 45
        cost = paddle.fluid.layers.cross_entropy(
            input=prediction, label=input_y
        )
46
        avg_cost = paddle.mean(x=cost)
47 48 49 50 51 52 53

        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.auto = True
        optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        optimizer.minimize(avg_cost)

54 55 56
        applied_meta_list = fleet._get_applied_meta_list()
        print("applied_meta_list: {}".format(applied_meta_list))

57 58 59

if __name__ == "__main__":
    unittest.main()