test_hsigmoid_op.py 26.1 KB
Newer Older
W
weixing02 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
weixing02 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yancey1989 已提交
15 16
import unittest
import numpy as np
L
Leo Chen 已提交
17
import paddle
J
JiabinYang 已提交
18
import paddle.fluid as fluid
19
import paddle.nn.functional as F
20
from paddle.fluid import Program, program_guard
21
import paddle.fluid.initializer as I
Y
Yancey1989 已提交
22
import math
23
from op_test import OpTest, skip_check_grad_ci
Y
Yancey1989 已提交
24

25
paddle.enable_static()
D
dzhwinter 已提交
26 27
np.random.seed(100)

Y
Yancey1989 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

def find_latest_set(num):
    return 1 + int(math.floor(math.log(num, 2)))


class CodeTable(object):
    def __init__(self, num_classes, code):
        self.c = num_classes + code

    def cal_index(self, bit):
        return (self.c >> (bit + 1)) - 1

    def get_length(self):
        return find_latest_set(self.c) - 1

    def cal_bit(self, bit):
        return self.c & (1 << bit)


47
class CodeTableWithCustomTree(object):
48 49 50
    def __init__(self, path_table, path_code, index):
        self.ptable_ = path_table
        self.pcode_ = path_code
51 52 53 54 55 56 57
        self.index_ = index

    def cal_index(self, bit):
        return self.ptable_[self.index_][bit]

    def get_length(self):
        length = 0
J
JiabinYang 已提交
58
        for ele in self.ptable_[self.index_]:  # find the first -1 to stop trace
59 60 61 62 63 64 65 66 67 68
            if ele >= 0:
                length = length + 1
            else:
                return length
        return length

    def cal_bit(self, bit):
        return self.pcode_[self.index_][bit]


W
weixing02 已提交
69
def hsigmoid(x, w, label, bias, num_classes):
Y
Yancey1989 已提交
70 71 72
    batch_size = x.shape[0]
    code_length = find_latest_set(num_classes - 1)
    code_table = [0 for _ in range(code_length)]
73 74 75
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
W
weixing02 已提交
76
    for i in range(batch_size):
W
weixing02 已提交
77
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
78
        length = code_table.get_length()
W
weixing02 已提交
79
        for j in range(length):
Y
Yancey1989 已提交
80
            idx = code_table.cal_index(j)
J
JiabinYang 已提交
81
            pre_output[i][j] += bias[idx][0]
82 83
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
W
weixing02 已提交
84
        length = code_table.get_length()
85 86 87
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
Y
Yancey1989 已提交
88
    # clip[-40.0, 40.0]
W
weixing02 已提交
89
    pre_output = np.clip(pre_output, -40.0, 40.0)
Y
Yancey1989 已提交
90
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
W
weixing02 已提交
91
    for i in range(batch_size):
W
weixing02 已提交
92
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
93 94
        length = code_table.get_length()
        sum = 0.0
W
weixing02 已提交
95
        for j in range(length):
Y
Yancey1989 已提交
96 97 98 99 100 101 102
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
103
    return pre_output, out
Y
Yancey1989 已提交
104 105


106 107
def hsigmoid_grad(x, w, label, bias, num_classes):
    batch_size = x.shape[0]
108 109 110
    dx = np.zeros(x.shape).astype('float64')
    dw = np.zeros(w.shape).astype('float64')
    db = np.zeros(bias.shape).astype('float64')
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            t = 1 / (1 + np.exp(-(np.dot(w[idx], x[i]) + bias[idx])))
            dx[i] = dx[i] + t * w[idx]
            dw[idx] += t * x[i]
            db[idx] += t
            if code_table.cal_bit(j):
                dx[i] = dx[i] - w[idx]
                dw[idx] -= x[i]
                db[idx] -= 1
    dx /= batch_size
    dw /= batch_size
    db /= batch_size
    return [dx, dw, db]


130 131 132
def hsigmoidWithCustomTree(
    x, w, path_table, path_code, label, bias, num_classes
):
133
    batch_size = x.shape[0]
134
    code_length = len(path_table[0])
135
    code_table = [0 for _ in range(code_length)]
J
JiabinYang 已提交
136
    # init pre_out with shape [N, code_length]
137 138 139
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
140 141
    if isinstance(bias, np.ndarray):
        for i in range(batch_size):
142
            code_table = CodeTableWithCustomTree(path_table, path_code, i)
143 144 145 146
            length = code_table.get_length()
            for j in range(length):
                idx = code_table.cal_index(j)
                pre_output[i][j] += bias[idx][0]
147
    for i in range(batch_size):
148
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
149 150 151 152 153 154 155 156
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
    # clip[-40.0, 40.0]
    pre_output = np.clip(pre_output, -40.0, 40.0)
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
    for i in range(batch_size):
157
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
158 159 160 161 162 163 164 165 166 167 168 169 170
        length = code_table.get_length()
        sum = 0.0
        for j in range(length):
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
    return pre_output, out


171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
def python_api(
    input,
    weight,
    label,
    path_table=None,
    path_code=None,
    bias=None,
    num_classes=-1,
    is_sparse=False,
    remote_prefetch=False,
):
    assert (
        is_sparse == remote_prefetch
    ), "is_sparse is equal to remote_prefetch in dygraph."
    return paddle.nn.functional.hsigmoid_loss(
        input,
        label,
        num_classes,
        weight,
        bias,
        path_table,
        path_code,
        is_sparse,
    )
195 196 197 198 199


python_out_sig = ["Out"]


J
JiabinYang 已提交
200 201 202
class TestHSigmoidOp(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
203 204
        self.python_api = python_api
        self.python_out_sig = python_out_sig
205 206 207
        num_classes = 101
        feature_size = 5
        batch_size = 20
208 209 210 211 212 213 214 215 216
        x = np.random.uniform(-1, 1, (batch_size, feature_size)).astype(
            'float64'
        )
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size)).astype(
            'float64'
        )
        label = np.random.randint(0, num_classes, (batch_size, 1)).astype(
            'int64'
        )
217
        bias = np.random.uniform(-1, 1, (num_classes - 1, 1)).astype('float64')
J
JiabinYang 已提交
218 219 220 221
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias}
        pre_output, out = hsigmoid(x, w, label, bias, num_classes)
        self.outputs = {'PreOut': pre_output, 'Out': out}
222
        self.user_grads = hsigmoid_grad(x, w, label, bias, num_classes)
J
JiabinYang 已提交
223 224

    def test_check_output(self):
225
        self.check_output(check_eager=True)
J
JiabinYang 已提交
226 227

    def test_check_grad(self):
228 229 230 231 232 233
        self.check_grad(
            ['X', 'W', 'Bias'],
            ['Out'],
            user_defined_grads=self.user_grads,
            check_eager=True,
        )
J
JiabinYang 已提交
234 235


236
@skip_check_grad_ci(
237
    reason="For 'TestHSigmoidOpSparse', check_grad is separately calculated by 'TestHSigmoidOpWithSparseGrad'."
238
)
J
JiabinYang 已提交
239 240 241
class TestHSigmoidOpSparse(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
242 243
        self.python_api = python_api
        self.python_out_sig = python_out_sig
244
        num_classes = 6  # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
J
JiabinYang 已提交
245 246
        feature_size = 8
        batch_size = 4
247 248
        x = np.random.random((batch_size, feature_size))
        w = np.random.random((num_classes - 1, feature_size))
249
        label = np.array([0, 1, 4, 5]).astype('int64')
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        path_table = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store
270
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
271 272 273 274
        self.attrs = {'num_classes': num_classes, 'is_sparse': True}
        self.inputs = {
            'X': x,
            'W': w,
275
            'PathTable': path_table,
276
            'PathCode': path_code,
J
JiabinYang 已提交
277
            'Label': label,
278
            'Bias': bias,
J
JiabinYang 已提交
279
        }
280 281 282
        pre_output, out = hsigmoidWithCustomTree(
            x, w, path_table, path_code, label, bias, num_classes
        )
J
JiabinYang 已提交
283 284 285
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
286
        self.check_output(check_eager=True)
J
JiabinYang 已提交
287 288 289 290 291


class TestHSigmoidOpWithSparseGrad(unittest.TestCase):
    def hs_net_conf(self, is_sparse):
        input_word = fluid.layers.data(name="x", shape=[1], dtype='int64')
292 293 294 295 296 297
        path_table = fluid.layers.data(
            name='path_table', shape=[3], dtype='int64'
        )
        path_code = fluid.layers.data(
            name='path_code', shape=[3], dtype='int64'
        )
J
JiabinYang 已提交
298
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
J
JiabinYang 已提交
299

300
        data_list = [input_word, path_table, path_code, label]
J
JiabinYang 已提交
301 302 303

        emb = fluid.layers.embedding(
            input=input_word,
J
JiabinYang 已提交
304
            is_sparse=is_sparse,
J
JiabinYang 已提交
305
            size=[3, 3],
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Normal(scale=1 / math.sqrt(3))
            ),
        )

        cost = fluid.layers.hsigmoid(
            input=emb,
            label=label,
            bias_attr=True,
            num_classes=3,
            path_table=path_table,
            path_code=path_code,
            is_custom=True,
            is_sparse=is_sparse,
        )
J
JiabinYang 已提交
321 322 323 324 325

        avg_cost = fluid.layers.reduce_mean(cost)

        return avg_cost, data_list

J
JiabinYang 已提交
326 327
    def training_test(self, is_sparse):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
C
cnn 已提交
328
            paddle.seed(1)
J
JiabinYang 已提交
329 330
            start_up = fluid.default_startup_program()
            x = np.arange(6).reshape(6)
331 332 333
            path_table = np.array([(1, 2, -1), (1, 2, -1)]).astype('int64')
            path_code = np.array([(1, 0, -1), (0, 0, -1)]).astype('int64')
            label = np.array([1, 4]).astype('int64')
J
JiabinYang 已提交
334 335 336 337 338 339 340 341 342 343 344 345

            loss, data_list = self.hs_net_conf(is_sparse)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)

            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(feed_list=data_list, place=place)
            exe = fluid.Executor(place)

            exe.run(start_up)
            result = list()
J
JiabinYang 已提交
346
            for i in range(10):
347 348 349 350 351 352 353 354 355 356 357 358
                data = [
                    (
                        [[x[i % 2]]],
                        [list(path_table[i % 2])],
                        [list(path_code[i % 2])],
                        [label[i % 2]],
                    )
                ]

                loss_val = exe.run(
                    main_program, feed=feeder.feed(data), fetch_list=[loss]
                )
J
JiabinYang 已提交
359 360 361 362 363 364
                result.append(loss_val)
        return result

    def test_hs_grad_with_sparse(self):
        dense_result = self.training_test(is_sparse=False)
        sparse_result = self.training_test(is_sparse=True)
365
        assert dense_result == sparse_result
J
JiabinYang 已提交
366 367


368
@skip_check_grad_ci(
369
    reason="[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
370
)
J
JiabinYang 已提交
371 372 373
class TestHSigmoidOpWithCostumTree(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
374 375
        self.python_api = python_api
        self.python_out_sig = python_out_sig
376
        num_classes = 6  # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
J
JiabinYang 已提交
377 378
        feature_size = 8
        batch_size = 4
379 380
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
381
        label = np.array([0, 1, 4, 5]).astype('int64')
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
        path_table = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store
402
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
403 404 405 406
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
407
            'PathTable': path_table,
408
            'PathCode': path_code,
J
JiabinYang 已提交
409
            'Label': label,
410
            'Bias': bias,
J
JiabinYang 已提交
411
        }
412 413 414
        pre_output, out = hsigmoidWithCustomTree(
            x, w, path_table, path_code, label, bias, num_classes
        )
J
JiabinYang 已提交
415 416 417
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
418
        self.check_output(check_eager=True)
J
JiabinYang 已提交
419 420

    def test_check_grad(self):
421 422 423 424 425 426
        self.check_grad(
            ['Bias', 'X', 'W'],
            ['Out'],
            no_grad_set=set('Label'),
            check_eager=True,
        )
J
JiabinYang 已提交
427

Y
Yancey1989 已提交
428

429
@skip_check_grad_ci(
430
    reason="[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
431
)
432 433 434
class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
435 436
        self.python_api = python_api
        self.python_out_sig = python_out_sig
437
        num_classes = 6  # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
438 439
        feature_size = 8
        batch_size = 4
440 441
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
442
        label = np.array([0, 1, 4, 5]).astype('int64')
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
        path_table = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store
463 464 465 466 467
        # bias = np.random.random((num_classes - 1, 1)).astype("float32")
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
468
            'PathTable': path_table,
469
            'PathCode': path_code,
470 471
            'Label': label,
        }
472 473 474 475 476 477 478 479 480
        pre_output, out = hsigmoidWithCustomTree(
            x=x,
            w=w,
            path_table=path_table,
            path_code=path_code,
            label=label,
            bias=None,
            num_classes=num_classes,
        )
481 482 483
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
484
        self.check_output(check_eager=True)
485 486

    def test_check_grad(self):
487 488 489
        self.check_grad(
            ['X', 'W'], ['Out'], no_grad_set=set('Label'), check_eager=True
        )
490 491


492 493 494 495 496 497 498 499 500 501 502 503 504
class TestHSigmoidLossAPI(unittest.TestCase):
    # test paddle.nn.functional.hsigmoid_loss, paddle.nn.HSigmoidLoss
    def setUp(self):
        self.dtype = 'float32'
        self.batch_size = 4
        self.feature_size = 6
        self.num_classes = 8
        self.is_custom = False
        self.place = paddle.CPUPlace()

        paddle.set_default_dtype(self.dtype)

        self.x_np = np.random.uniform(
505 506 507 508 509
            -1, 1, [self.batch_size, self.feature_size]
        ).astype(self.dtype)
        self.labels_np = np.random.randint(
            self.num_classes, size=(self.batch_size, 1), dtype='int64'
        )
510
        self.weight_np = np.random.uniform(
511 512 513 514 515
            -1, 1, [self.num_classes - 1, self.feature_size]
        ).astype(self.dtype)
        self.bias_np = np.random.uniform(-1, 1, (self.num_classes - 1,)).astype(
            self.dtype
        )
516 517
        self.path_table_np = None
        self.path_code_np = None
518 519 520 521 522 523 524
        _, self.out_np = hsigmoid(
            self.x_np,
            self.weight_np,
            self.labels_np,
            self.bias_np,
            self.num_classes,
        )
525 526 527
        self.set_attrs()

        if self.is_custom:
528 529 530 531 532 533 534 535 536
            _, self.out_np = hsigmoidWithCustomTree(
                self.x_np,
                self.weight_np,
                self.path_table_np,
                self.path_code_np,
                self.labels_np,
                self.bias_np.reshape(-1, 1),
                self.num_classes,
            )
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551

    def set_attrs(self):
        pass

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        labels = paddle.to_tensor(self.labels_np)
        weight = paddle.to_tensor(self.weight_np)
        bias = paddle.to_tensor(self.bias_np)
        path_table = None
        path_code = None
        if self.is_custom:
            path_table = paddle.to_tensor(self.path_table_np)
            path_code = paddle.to_tensor(self.path_code_np)
552 553 554
        out1 = F.hsigmoid_loss(
            x, labels, self.num_classes, weight, bias, path_table, path_code
        )
555 556 557

        weight_attr = I.NumpyArrayInitializer(self.weight_np)
        bias_attr = I.NumpyArrayInitializer(self.bias_np)
558 559 560 561 562 563 564
        m = paddle.nn.HSigmoidLoss(
            self.feature_size,
            self.num_classes,
            weight_attr,
            bias_attr,
            self.is_custom,
        )
565 566 567
        out2 = m(x, labels, path_table, path_code)

        for out in [out1, out2]:
568
            np.testing.assert_allclose(self.out_np, out.numpy(), rtol=1e-05)
569 570 571 572 573 574 575 576 577
        paddle.enable_static()

    def test_static_api(self):
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        with paddle.static.program_guard(train_program, startup_program):
            x = paddle.static.data('x', [-1, self.feature_size])
            labels = paddle.static.data('labels', [-1, 1], 'int64')
            weight = paddle.static.data('weight', [-1, self.feature_size])
578 579 580 581 582 583
            bias = paddle.static.data(
                'bias',
                [
                    -1,
                ],
            )
584 585 586 587 588
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = paddle.static.data('path_table', [-1, -1], 'int64')
                path_code = paddle.static.data('path_code', [-1, -1], 'int64')
589 590 591
            out1 = F.hsigmoid_loss(
                x, labels, self.num_classes, weight, bias, path_table, path_code
            )
592 593

            weight_attr = paddle.framework.ParamAttr(
594 595
                initializer=I.NumpyArrayInitializer(self.weight_np)
            )
596
            bias_attr = paddle.framework.ParamAttr(
597 598 599 600 601 602 603 604 605
                initializer=I.NumpyArrayInitializer(self.bias_np)
            )
            m = paddle.nn.HSigmoidLoss(
                self.feature_size,
                self.num_classes,
                weight_attr,
                bias_attr,
                self.is_custom,
            )
606 607 608 609 610 611 612 613
            out2 = m(x, labels, path_table, path_code)

            exe = paddle.static.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {
                'x': self.x_np,
                'labels': self.labels_np,
                'weight': self.weight_np,
614
                'bias': self.bias_np,
615 616 617 618
            }
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
619 620 621
            ret1, ret2 = exe.run(
                train_program, feed=feed_dict, fetch_list=[out1, out2]
            )
622 623

            for ret in [ret1, ret2]:
624
                np.testing.assert_allclose(self.out_np, ret, rtol=1e-05)
625 626 627 628 629 630 631 632 633 634 635 636 637 638

    def test_fluid_api(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            x = fluid.data('x', [-1, self.feature_size])
            labels = fluid.data('labels', [-1, 1], 'int64')
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = fluid.data('path_table', [-1, -1], 'int64')
                path_code = fluid.data('path_code', [-1, -1], 'int64')
            weight_attr = I.NumpyArrayInitializer(self.weight_np)
            bias_attr = I.NumpyArrayInitializer(self.bias_np)
639 640 641 642 643 644 645 646 647 648 649
            out = fluid.layers.hsigmoid(
                x,
                labels,
                self.num_classes,
                weight_attr,
                bias_attr,
                'out',
                path_table,
                path_code,
                self.is_custom,
            )
650 651 652 653 654 655 656

            exe = fluid.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {'x': self.x_np, 'labels': self.labels_np}
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
657
            (ret,) = exe.run(train_program, feed=feed_dict, fetch_list=[out])
658

659
            np.testing.assert_allclose(ret, self.out_np, rtol=1e-05)
660

661
    def test_errors(self):
662 663 664
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
665 666 667 668 669 670 671 672 673 674
            # test paddle.nn.HSigmoidLoss
            self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, 6, 1)

            # test paddle.nn.functional.hsigmoid_loss
            x = paddle.static.data('x', [4, 6])
            label = paddle.static.data('label', [4, 1], 'int64')
            weight = paddle.static.data('weight', [7, 6])
            bias = paddle.static.data('bias', [7])

            x_int32 = paddle.static.data('x_int32', [4, 6], 'int32')
675 676 677
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x_int32, label, 8, weight
            )
678

679 680 681 682 683 684
            label_float32 = paddle.static.data(
                'label_float32', [4, 1], 'float32'
            )
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x, label_float32, 8, weight
            )
685 686

            weight_int32 = paddle.static.data('weight_int32', [7, 6], 'int32')
687 688 689
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x, label, 8, weight_int32
            )
690 691

            bias_int32 = paddle.static.data('bias_int32', [7], 'int32')
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x, label, 8, weight, bias=bias_int32
            )

            path_table_int32 = paddle.static.data(
                'path_table_int32', [7], 'int32'
            )
            self.assertRaises(
                TypeError,
                F.hsigmoid_loss,
                x,
                label,
                8,
                weight,
                path_table=path_table_int32,
            )

            path_code_int32 = paddle.static.data(
                'path_code_int32', [7], 'int32'
            )
            self.assertRaises(
                TypeError,
                F.hsigmoid_loss,
                x,
                label,
                8,
                weight,
                path_code=path_code_int32,
            )
721

L
Linjie Chen 已提交
722 723 724 725 726 727 728 729 730 731 732 733 734 735
        # test paddle.nn.HSigmoidLoss
        paddle.disable_static(self.place)
        x_arr = np.array([], dtype=np.float32)
        x = paddle.to_tensor(np.reshape(x_arr, (100000, 0)))
        label = paddle.to_tensor(0, dtype='int64')
        self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, x, label)

        # test paddle.nn.functional.hsigmoid_loss
        x = paddle.to_tensor(np.reshape(x_arr, (10, 0)), dtype='float32')
        label = paddle.to_tensor([], dtype='int64')
        weight = paddle.to_tensor([], dtype='float32')
        self.assertRaises(ValueError, F.hsigmoid_loss, x, label, 0, weight)
        paddle.enable_static()

736
        # test paddle.fluid.layers.hsigmoid
737 738 739 740 741 742
        with program_guard(Program()):
            label = fluid.data('label', [4, 1], 'int64')
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hsigmoid, 1, label, 2)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[4, 3], dtype='int32')
743 744 745
            self.assertRaises(
                TypeError, fluid.layers.hsigmoid, x_int32, label, 2
            )
746 747 748 749 750 751 752 753
            # support the input dtype is float32
            x_fp32 = fluid.data(name='x_fp32', shape=[4, 3], dtype='float32')
            fluid.layers.hsigmoid(x_fp32, label, 2)

            # The label type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hsigmoid, x_fp32, 1, 2)
            # The label dtype must be int64.
            label_int32 = fluid.data('label_int32', [4, 1], 'int32')
754 755 756
            self.assertRaises(
                TypeError, fluid.layers.hsigmoid, x_fp32, label_int32, 2
            )
757 758


759 760 761
class TestHSigmoidLossAPICustom(TestHSigmoidLossAPI):
    def set_attrs(self):
        self.is_custom = True
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
        self.path_table_np = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(np.int64)
        self.path_code_np = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(np.int64)
778 779 780 781 782

    def test_errors(self):
        pass


Y
Yancey1989 已提交
783 784
if __name__ == '__main__':
    unittest.main()