batch_norm_mkldnn_op.cc 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

22 23 24 25 26 27
using batch_norm_bwd = mkldnn::batch_normalization_backward;
using batch_norm_fwd = mkldnn::batch_normalization_forward;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
28 29
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;
30
using platform::to_void_cast;
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

namespace {
template <typename T>
struct bn_type_traits {
  using op_type = T;
  using op_desc = typename op_type::desc;
  using op_prim = typename op_type::primitive_desc;
};

template <typename T, typename Container>
void copy_to_weights(T scale_begin, T scale_end, T shift_begin, T shift_end,
                     Container *c) {
  auto it = std::begin(*c);

  std::copy(scale_begin, scale_end, std::inserter(*c, it));
  std::copy(
      shift_begin, shift_end,
      std::inserter(*c, std::next(it, std::distance(scale_begin, scale_end))));
}

template <typename Op, typename... Args>
void run_batch_norm_op(Args &&... args) {
  Op batch_norm_op{args...};

  std::vector<mkldnn::primitive> pipeline;
  pipeline.push_back(batch_norm_op);
  mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}

}  // namespace

template <typename T>
class BatchNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");

    const auto *x = ctx.Input<Tensor>("X");
    const auto *mean = ctx.Input<Tensor>("Mean");
    const auto *variance = ctx.Input<Tensor>("Variance");

    auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *batch_mean = ctx.Output<Tensor>("SavedMean");
    auto *batch_variance = ctx.Output<Tensor>("SavedVariance");

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *shift = ctx.Input<Tensor>("Bias");

86 87 88 89 90 91 92 93 94 95 96 97
    PADDLE_ENFORCE(x->layout() == DataLayout::kMKLDNN &&
                       x->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input x tensor");

    const T *x_data = x->data<T>();
    const T *mean_data = mean->data<T>();
    const T *variance_data = variance->data<T>();
    T *y_data = y->mutable_data<T>(ctx.GetPlace());
    T *mean_out_data = mean_out->mutable_data<T>(ctx.GetPlace());
    T *variance_out_data = variance_out->mutable_data<T>(ctx.GetPlace());
    T *batch_mean_data = nullptr;
    T *batch_variance_data = nullptr;
98 99

    if (!is_test) {
100 101
      batch_mean_data = batch_mean->mutable_data<T>(ctx.GetPlace());
      batch_variance_data = batch_variance->mutable_data<T>(ctx.GetPlace());
102 103 104 105 106
    }

    auto propagation = is_test == true ? mkldnn::prop_kind::forward_scoring
                                       : mkldnn::prop_kind::forward_training;

107 108 109 110
    auto src_tz = paddle::framework::vectorize2int(x->dims());
    auto scale_tz = paddle::framework::vectorize2int(scale->dims());
    PADDLE_ENFORCE(scale_tz.size() == 1, "Dims of scale tensor is NOT 1");
    const unsigned int ic = scale_tz[0];
111 112 113 114

    unsigned flags = mkldnn::use_scale_shift;
    if (is_test) flags |= mkldnn::use_global_stats;

115 116 117 118 119 120
    // create mkldnn memory from input x tensor
    auto src_memory =
        memory({{{src_tz}, memory::data_type::f32, x->format()}, mkldnn_engine},
               to_void_cast(x_data));

    // create primitive descriptor for batch norm forward
121
    using bn_fwd_types = bn_type_traits<mkldnn::batch_normalization_forward>;
122 123 124 125 126 127
    auto batch_norm_fwd_desc = bn_fwd_types::op_desc{
        propagation, src_memory.get_primitive_desc().desc(), epsilon, flags};
    std::shared_ptr<batch_norm_fwd::primitive_desc> batch_norm_fwd_pd =
        std::shared_ptr<batch_norm_fwd::primitive_desc>(
            new batch_norm_fwd::primitive_desc(batch_norm_fwd_desc,
                                               mkldnn_engine));
128

129 130 131 132
    // Save the pd to be used in backward pass
    const std::string key = ctx.op().Output("SavedMean");
    const std::string key_batch_norm_fwd_pd = key + "@bn_fwd_pd";
    dev_ctx.SetBlob(key_batch_norm_fwd_pd, batch_norm_fwd_pd);
133 134 135 136 137 138 139 140 141

    // MKLDNN requires a single piece of memory for scale and shift/bias data
    const size_t scaleshift_size = 2 * ic;
    std::vector<T> scaleshift_data;
    scaleshift_data.reserve(scaleshift_size);

    copy_to_weights(scale->data<T>(), scale->data<T>() + ic, shift->data<T>(),
                    shift->data<T>() + ic, &scaleshift_data);

142 143 144
    // crate mkldnn memory for weights(scale/shift)
    auto scaleshift_memory = memory(batch_norm_fwd_pd->weights_primitive_desc(),
                                    scaleshift_data.data());
145

146 147
    // create mkldnn memory for output y tensor
    auto dst_memory = memory(batch_norm_fwd_pd->dst_primitive_desc(), y_data);
148

149 150 151 152
    if (is_test) {
      // create mkldnn memory for stats (as input)
      auto mean_memory = memory(batch_norm_fwd_pd->mean_primitive_desc(),
                                to_void_cast(mean_data));
153
      auto variance_memory =
154 155
          memory(batch_norm_fwd_pd->variance_primitive_desc(),
                 to_void_cast(variance_data));
156 157

      run_batch_norm_op<typename bn_fwd_types::op_type>(
158 159
          *batch_norm_fwd_pd, src_memory,
          (const mkldnn::primitive::at &)mean_memory,
160
          (const mkldnn::primitive::at &)variance_memory, scaleshift_memory,
161
          dst_memory);
162
    } else {
163
      // create mkldnn memory for stats (as output)
164
      auto mean_memory =
165 166 167
          memory(batch_norm_fwd_pd->mean_primitive_desc(), batch_mean_data);
      auto variance_memory = memory(
          batch_norm_fwd_pd->variance_primitive_desc(), batch_variance_data);
168

169 170
      run_batch_norm_op<bn_fwd_types::op_type>(*batch_norm_fwd_pd, src_memory,
                                               scaleshift_memory, dst_memory,
171 172 173 174
                                               mean_memory, variance_memory);
    }

    if (!is_test) {
175 176 177 178 179 180 181 182 183
      // mkldnn only compute stats for current batch
      // so we need compute momentum stats via Eigen lib
      EigenVectorArrayMap<T> batch_mean_e(batch_mean_data, ic);
      EigenVectorArrayMap<T> batch_variance_e(batch_variance_data, ic);
      ConstEigenVectorArrayMap<T> mean_e(mean_data, ic);
      ConstEigenVectorArrayMap<T> variance_e{variance_data, ic};

      EigenVectorArrayMap<T> running_mean_e(mean_out_data, ic);
      EigenVectorArrayMap<T> running_variance_e(variance_out_data, ic);
184 185

      auto one_minus_momentum = 1. - momentum;
186 187 188
      running_mean_e = mean_e * momentum + batch_mean_e * one_minus_momentum;
      running_variance_e =
          variance_e * momentum + batch_variance_e * one_minus_momentum;
189
    }
190 191 192 193

    y->set_layout(DataLayout::kMKLDNN);
    y->set_format(
        (memory::format)dst_memory.get_primitive_desc().desc().data.format);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  }
};

template <typename T>
class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext &ctx) const override {
    auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();

    const float epsilon = ctx.Attr<float>("epsilon");

    const auto *x = ctx.Input<Tensor>("X");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *shift = ctx.Input<Tensor>("Bias");
    const auto *batch_mean = ctx.Input<Tensor>("SavedMean");
    const auto *batch_variance = ctx.Input<Tensor>("SavedVariance");

    const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *diff_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *diff_shift = ctx.Output<Tensor>(framework::GradVarName("Bias"));

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    PADDLE_ENFORCE(diff_y->layout() == DataLayout::kMKLDNN &&
                       diff_y->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input diff_y tensor");

    const T *x_data = x->data<T>();
    const T *diff_y_data = diff_y->data<T>();
    const T *batch_mean_data = batch_mean->data<T>();
    const T *batch_variance_data = batch_variance->data<T>();
    const T *scale_data = scale->data<T>();
    const T *shift_data = shift->data<T>();
    T *diff_x_data = diff_x->mutable_data<T>(ctx.GetPlace());
    T *diff_scale_data = diff_scale->mutable_data<T>(ctx.GetPlace());
    T *diff_shift_data = diff_shift->mutable_data<T>(ctx.GetPlace());

    auto src_tz = paddle::framework::vectorize2int(x->dims());
    auto diff_src_tz = src_tz;
    auto dst_tz = src_tz;
    auto diff_dst_tz = dst_tz;
    auto scale_tz = paddle::framework::vectorize2int(scale->dims());
    PADDLE_ENFORCE(scale_tz.size() == 1, "Dims of scale tensor is NOT 1");

    const unsigned int ic = scale_tz[0];

    // Retrieve bn_fwd_pd from device context
    const std::string key = ctx.op().Input("SavedMean");
    const std::string key_batch_norm_fwd_pd = key + "@bn_fwd_pd";
    auto batch_norm_fwd_pd =
        std::static_pointer_cast<batch_norm_fwd::primitive_desc>(
            dev_ctx.GetBlob(key_batch_norm_fwd_pd));
    PADDLE_ENFORCE(batch_norm_fwd_pd != nullptr,
                   "Fail to find batch_norm_fwd_pd in device context");
248

249
    using bn_bwd_types = bn_type_traits<mkldnn::batch_normalization_backward>;
250

251 252 253 254 255
    // create mkldnn memory from input diff_y tensor
    auto user_diff_dst_memory =
        memory({{{diff_dst_tz}, memory::data_type::f32, diff_y->format()},
                mkldnn_engine},
               to_void_cast(diff_y_data));
256

257 258 259 260
    // create mkldnn memory from input x tensor
    auto src_memory =
        memory({{{src_tz}, memory::data_type::f32, x->format()}, mkldnn_engine},
               to_void_cast(x_data));
261

262 263 264
    // for diff_dst, try to use same format as dst in forward pass
    auto diff_dst_pd = batch_norm_fwd_pd.get()->dst_primitive_desc();
    auto diff_dst_md = diff_dst_pd.desc();
265

266 267
    // create primitive descriptor for batch norm backward
    unsigned flags = mkldnn::use_scale_shift;
268
    auto batch_norm_bwd_desc = bn_bwd_types::op_desc{
269 270
        mkldnn::prop_kind::backward, diff_dst_md,
        src_memory.get_primitive_desc().desc(), epsilon, flags};
271
    auto batch_norm_bwd_pd = bn_bwd_types::op_prim{
272 273 274 275 276 277 278 279 280 281 282
        batch_norm_bwd_desc, mkldnn_engine, *batch_norm_fwd_pd};

    // reorder user_diff_dst if it's not in preferred format
    auto diff_dst_memory = user_diff_dst_memory;
    primitive reorder_diff_dst;
    bool is_diff_dst_reordered = false;
    if (diff_dst_pd != user_diff_dst_memory.get_primitive_desc()) {
      diff_dst_memory = memory(diff_dst_pd);
      reorder_diff_dst = reorder(user_diff_dst_memory, diff_dst_memory);
      is_diff_dst_reordered = true;
    }
283

284 285 286 287 288
    // create mkldnn memory for input tensors (src/mean/variance)
    auto mean_memory = memory(batch_norm_bwd_pd.mean_primitive_desc(),
                              to_void_cast(batch_mean_data));
    auto variance_memory = memory(batch_norm_bwd_pd.variance_primitive_desc(),
                                  to_void_cast(batch_variance_data));
289

290
    // MKLDNN requires a single piece of memory for scale and shift/bias data
291 292 293 294
    const size_t scaleshift_size = 2 * ic;

    std::vector<T> scaleshift_data;
    scaleshift_data.reserve(scaleshift_size);
295 296
    copy_to_weights(scale_data, scale_data + ic, shift_data, shift_data + ic,
                    &scaleshift_data);
297

298 299 300
    // create mkldnn memory for input tensors (scale/shift)
    auto scaleshift_memory = memory(batch_norm_bwd_pd.weights_primitive_desc(),
                                    scaleshift_data.data());
301

302
    // create mkldnn memory for output diff weights (combined scale/shift)
303 304 305
    std::vector<T> diff_scaleshift_data;
    diff_scaleshift_data.reserve(scaleshift_size);
    auto diff_scaleshift_memory =
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        memory(batch_norm_bwd_pd.diff_weights_primitive_desc(),
               diff_scaleshift_data.data());

    // here assume diff_src is in the same format of src
    auto diff_src_memory = memory(src_memory.get_primitive_desc(), diff_x_data);

    // finally create batch_norm backward primitive
    auto batch_norm_bwd_prim =
        batch_norm_bwd(batch_norm_bwd_pd, src_memory, mean_memory,
                       variance_memory, diff_dst_memory, scaleshift_memory,
                       diff_src_memory, diff_scaleshift_memory);

    // execute optional reorder and batch_norm backward primitive
    std::vector<primitive> pipeline;
    if (is_diff_dst_reordered) pipeline.push_back(reorder_diff_dst);
    pipeline.push_back(batch_norm_bwd_prim);
    stream(stream::kind::eager).submit(pipeline).wait();

    // copy back diff sacle/shift to output tensors (diff scale/shift)
    diff_scaleshift_data.resize(scaleshift_size);
326
    auto it = std::begin(diff_scaleshift_data);
327
    std::copy(it, std::next(it, ic), diff_scale_data);
328
    std::copy(std::next(it, ic), std::end(diff_scaleshift_data),
329 330 331 332 333 334 335
              diff_shift_data);

    // set layout/format of output tensors
    diff_x->set_layout(DataLayout::kMKLDNN);
    diff_x->set_format((memory::format)diff_src_memory.get_primitive_desc()
                           .desc()
                           .data.format);
336 337 338 339 340 341
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
342
REGISTER_OP_KERNEL(batch_norm, MKLDNN, ::paddle::platform::CPUPlace,
343
                   ops::BatchNormMKLDNNOpKernel<float>);
344
REGISTER_OP_KERNEL(batch_norm_grad, MKLDNN, ::paddle::platform::CPUPlace,
345
                   ops::BatchNormMKLDNNGradOpKernel<float>);