compiler.py 21.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import multiprocessing
import os
import six
X
polish  
Xin Pan 已提交
18
import sys
19
from .. import compat as cpt
X
Xin Pan 已提交
20
from . import framework
21
from .framework import _get_paddle_place, _get_paddle_place_list
22
from .framework import cuda_places, cpu_places, xpu_places
23 24
from . import core

X
Xin Pan 已提交
25 26
__all__ = ['CompiledProgram', 'ExecutionStrategy', 'BuildStrategy']

27 28
ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
BuildStrategy = core.ParallelExecutor.BuildStrategy
F
flame 已提交
29 30
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
31
DeviceType = core.DeviceType
32 33 34 35 36 37 38 39


def _place_obj(place):
    p = core.Place()
    p.set_place(place)
    return p


40 41
def _is_pserver_mode(main_program):
    main = main_program if main_program \
C
chengduo 已提交
42
        else framework.default_main_program()
43 44 45 46 47 48
    for op in main.global_block().ops:
        if op.type in ["send", "recv"]:
            return True
    return False


C
chengduo 已提交
49 50 51 52 53 54 55 56
def _has_backward_op(graph):
    for node in graph.nodes():
        if node.is_op() and node.op() is not None and \
                node.op().type().endswith("_grad"):
            return True
    return False


57 58 59 60 61 62 63 64 65
def _prune_feed_ops(program):
    # prune the feed ops in the program.
    pop_idx = []
    for i, op in enumerate(program.global_block().ops):
        if op.type == "feed": pop_idx.append(i)
    for index in pop_idx[::-1]:
        program.global_block()._remove_op(index)


66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
def _has_optimize_op(block):
    for op in block.ops:
        op_maker = core.op_proto_and_checker_maker
        optimize = core.op_proto_and_checker_maker.OpRole.Optimize
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize):
            return True
    return False


def _has_optimizer_in_control_flow(program):
    if not program:
        program = framework.default_main_program()
    for op in program.global_block().ops:
        if op.type == "conditional_block_grad":
            sub_block = program.block(op._block_attr_id("sub_block"))
            if _has_optimize_op(sub_block):
                return True

    return False


88 89 90 91 92 93 94 95 96 97
def _should_broadcast_or_not_exists(program, var_name):
    block = program.global_block()
    var = block.vars.get(var_name, None)
    if var is None:
        return True
    is_distributed = getattr(var, '_is_distributed', False) or getattr(
        var, 'is_distributed', False)
    return not is_distributed


X
polish  
Xin Pan 已提交
98
class CompiledProgram(object):
X
polish  
Xin Pan 已提交
99
    """
100 101
    :api_attr: Static Graph
    
C
chengduo 已提交
102 103 104 105 106
    The CompiledProgram is used to transform a program or graph for
    various optimizations according to the configuration of build_strategy,
    for example, the operators' fusion in the computation graph, memory
    optimization during the execution of the computation graph, etc.
    For more information about build_strategy, please refer to
107
    :code:`paddle.static.BuildStrategy`.
X
polish  
Xin Pan 已提交
108

C
chengduo 已提交
109
    Args:
110
        program_or_graph (Graph|Program): This argument is the Program or Graph
C
chengduo 已提交
111
            being executed.
112
        build_strategy(BuildStrategy): This argument is used to compile the
C
chengduo 已提交
113 114 115
            program or graph with the specified options, such as operators' fusion
            in the computational graph and memory optimization during the execution
            of the computational graph. For more information about build_strategy,
116
            please refer to :code:`paddle.static.BuildStrategy`. The default is None.
X
Xin Pan 已提交
117

C
chengduo 已提交
118 119
    Returns:
        CompiledProgram
X
polish  
Xin Pan 已提交
120 121

    Example:
X
Xin Pan 已提交
122
        .. code-block:: python
123

124 125 126
            import numpy
            import paddle
            import paddle.static as static
127

128
            paddle.enable_static()
129

130 131
            place = paddle.CUDAPlace(0) # paddle.CPUPlace()
            exe = static.Executor(place)
132

133
            data = static.data(name='X', shape=[None, 1], dtype='float32')
134
            hidden = static.nn.fc(x=data, size=10)
135 136
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
137

138 139 140 141 142 143 144 145
            exe.run(static.default_startup_program())
            compiled_prog = static.CompiledProgram(
                static.default_main_program())

            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(compiled_prog,
                                feed={"X": x},
                                fetch_list=[loss.name])
X
polish  
Xin Pan 已提交
146 147
    """

C
chengduo 已提交
148
    def __init__(self, program_or_graph, build_strategy=None):
X
Xin Pan 已提交
149 150
        if isinstance(program_or_graph, core.Graph):
            self._graph = program_or_graph
151
            # don't not create a new program here.
X
Xin Pan 已提交
152 153
            self._program = None
        elif isinstance(program_or_graph, framework.Program):
154
            _prune_feed_ops(program_or_graph)
X
Xin Pan 已提交
155 156 157
            self._graph = core.Graph(program_or_graph.desc)
            self._program = program_or_graph
        else:
158 159 160
            raise TypeError(
                "The type of program_to_graph parameter is wrong, expected Graph or Program, but received %s"
                % type(program_or_graph))
X
Xin Pan 已提交
161

X
polish  
Xin Pan 已提交
162 163 164
        self._scope = None
        self._place = None
        self._executor = None
165 166
        self._compiled = False
        self._is_data_parallel = False
F
flame 已提交
167
        self._is_inference = False
C
chengduo 已提交
168 169 170 171 172
        self._loss_name = None
        self._share_vars_from = None
        self._places = None
        self._build_strategy = build_strategy
        self._exec_strategy = None
173

X
Xin Pan 已提交
174 175 176 177
    def with_data_parallel(self,
                           loss_name=None,
                           build_strategy=None,
                           exec_strategy=None,
S
sneaxiy 已提交
178 179
                           share_vars_from=None,
                           places=None):
C
chengduo 已提交
180 181 182 183 184 185
        """
        This interface is used to transform the input Program or Graph to a multi-graph
        to run the model in data parallel mode. Users can use the build_strategy and
        exec_strategy to set some optimizations that can be applied during the construction
        and computation of the Graph, such as reducing the number of AllReduce operations,
        specifying the size of the thread pool used in the computation Graph running the model,
186 187 188 189 190 191 192
        and so on. 
        
        .. note::
            If build_strategy is specified when building CompiledProgram and calling 
            with_data_parallel, build_strategy in CompiledProgram will be overwritten, therefore, 
            if it is data parallel training, it is recommended to set build_strategy when calling 
            with_data_parallel interface.
C
chengduo 已提交
193 194

        Args:
195
            loss_name (str): This parameter is the name of the loss Tensor of the model.
C
chengduo 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
                **Note: If it is model training, you must set loss_name, otherwise the
                result may be problematic**. The default is None.
            build_strategy(BuildStrategy): This parameter is used to compile the
                program or graph with the specified options, such as operators' fusion
                in the computational graph and memory optimization during the execution
                of the computational graph. For more information about build_strategy,
                please refer to :code:`fluid.BuildStrategy`. The default is None.
            exec_strategy(ExecutionStrategy): exec_strategy specifies the options that can
                be changed when running the current model, such as the thread pool size.
                For more information about exec_strategy, please refer to :code:`fluid.ExecutionStrategy`.
                The default is None.
            share_vars_from(CompiledProgram): If share_vars_from is set, the current
                CompiledProgram will share the parameter value with the CompiledProgram
                specified by share_vars_from. This parameter needs to be set when model testing
                is required during model training, and the data parallel mode is used for
                training and testing. Since CompiledProgram will only distribute parameter
212
                Tensors to other devices when it is first executed, the CompiledProgram
C
chengduo 已提交
213 214
                specified by share_vars_from must be run before the current CompiledProgram.
                The default is None.
215
            places(list(CUDAPlace)|list(CPUPlace)|list(str)|None): This parameter specifies the device
C
chengduo 已提交
216 217 218 219 220 221 222 223 224 225
                on which the model is running. If you want to run on GPU0 and GPU1, places are
                [fluid.CUDAPlace(0), fluid.CUDAPlace(1)]; if you want to run with 2 CPUs, places are
                [fluid.CPUPlace()] * 2. If the parameter is not set, i.e. the parameter is None,
                the available device will be obtained from the environment variable when the model
                is executed: If the GPU is used, the currently available device ID is obtained
                from the environment variable FLAGS_selected_gpus or CUDA_VISIBLE_DEVICES when
                the model is executed; CPU, when the model is executed, the currently available
                CPU number is obtained from the environment variable CPU_NUM. For example,
                export CPU_NUM=4, if the environment variable is not set, the executor will
                add the variable to the environment variable and set its value to 1.
226 227
                The default is None. If ``places`` is the list of string, the string in the list
                can be ``cpu``, ``gpu:x``, where ``x`` is the index of the GPUs. 
C
chengduo 已提交
228 229 230

        Returns:
            CompiledProgram
X
Xin Pan 已提交
231

232 233 234
        Example:
            .. code-block:: python

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
                import numpy
                import os
                import paddle
                import paddle.static as static

                paddle.enable_static()

                use_cuda = True
                place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                parallel_places = [paddle.CUDAPlace(0), paddle.CUDAPlace(1)] if use_cuda else [paddle.CPUPlace()] * 2

                # NOTE: If you use CPU to run the program, you need
                # to specify the CPU_NUM, otherwise, paddle will use
                # all the number of the logic core as the CPU_NUM,
                # in that case, the batch size of the input should be
                # greater than CPU_NUM, if not, the process will be
                # failed by an exception.
                if not use_cuda:
                    os.environ['CPU_NUM'] = str(2)

                exe = static.Executor(place)

                data = static.data(name='X', shape=[None, 1], dtype='float32')
258
                hidden = static.nn.fc(x=data, size=10)
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
                loss = paddle.mean(hidden)

                test_program = static.default_main_program().clone(for_test=True)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

                exe.run(static.default_startup_program())
                compiled_train_prog = static.CompiledProgram(
                    static.default_main_program()).with_data_parallel(
                            loss_name=loss.name, places=parallel_places)
                # NOTE: if not set share_vars_from=compiled_train_prog,
                # the parameters used in test process are different with 
                # the parameters used by train process
                compiled_test_prog = static.CompiledProgram(
                    test_program).with_data_parallel(
                            share_vars_from=compiled_train_prog,
                            places=parallel_places)

                train_data = numpy.random.random(size=(10, 1)).astype('float32')
                loss_data, = exe.run(compiled_train_prog,
278 279
                                feed={"X": train_data},
                                fetch_list=[loss.name])
280 281
                test_data = numpy.random.random(size=(10, 1)).astype('float32')
                loss_data, = exe.run(compiled_test_prog,
282 283
                                feed={"X": test_data},
                                fetch_list=[loss.name])
X
Xin Pan 已提交
284
        """
285 286
        assert not self._is_data_parallel, "Already compiled with parallel, cannot be recompiled."
        assert not self._is_inference, "Cannot compile with both data parallel and inference."
287
        self._is_data_parallel = True
C
chengduo 已提交
288 289 290 291 292
        # FIXME(zcd): Currently, the build_strategy can be set during creating
        # CompiledProgram or calling with_data_parallel, and it may be confusing,
        # but in the long run, we should set up build_strategy only when creating
        # CompiledProgram, and exec_strategy should be deprecated.
        if build_strategy is not None: self._build_strategy = build_strategy
293 294
        self._exec_strategy = exec_strategy
        self._loss_name = loss_name
X
polish  
Xin Pan 已提交
295
        self._share_vars_from = share_vars_from
296 297 298 299
        if isinstance(places, (list, tuple)):
            self._places = _get_paddle_place_list(places)
        else:
            self._places = _get_paddle_place(places)
C
chengduo 已提交
300 301

        if _has_backward_op(self._graph):
302
            assert self._loss_name is not None, "The loss name of CompiledProgram is None. The loss name should be set if CompiledProgram contains backward part."
C
chengduo 已提交
303 304 305 306 307

        if self._places is not None:
            if not isinstance(self._places, (list, tuple)):
                self._places = [self._places]

308 309
        return self

F
flame 已提交
310
    def _with_inference_optimize(self, config):
F
flame 已提交
311 312 313 314 315 316 317
        """ Add inference optimize

        Args:
            config: instance of `NativeConfig` or `AnalysisConfig` to create predictor
        Returns:
            self
        """
318 319
        assert not self._is_data_parallel, "Cannot compile with both data parallel and inference"
        assert not self._is_inference, "Already compiled with inference, cannot be recompiled."
X
Xin Pan 已提交
320

F
flame 已提交
321 322 323 324 325 326 327
        assert any([
            isinstance(config, InferNativeConfig),
            isinstance(config, InferAnalysisConfig)
        ])
        self._is_inference = True
        self._infer_config = config
        return self
X
polish  
Xin Pan 已提交
328

F
flame 已提交
329
    def _with_distributed(self):
330 331 332
        raise NotImplementedError(
            "Subclass of CompiledProgram should implement _with_distributed method."
        )
X
polish  
Xin Pan 已提交
333

334
    def _compile_data_parallel(self, places, use_device, scope=None):
X
polish  
Xin Pan 已提交
335
        if self._share_vars_from:
336
            if scope:
X
polish  
Xin Pan 已提交
337 338
                sys.stderr.write("share_vars_from is set, scope is ignored.\n")
            if not self._share_vars_from._is_data_parallel:
339 340 341
                raise ValueError(
                    "The shared Program is not data parallel, cannot "
                    "share variables from it.")
X
polish  
Xin Pan 已提交
342 343
            if self._share_vars_from._executor is None:
                raise ValueError(
344 345
                    "The shared Program is not compiled and executed, so there is no "
                    "variables to share.")
X
polish  
Xin Pan 已提交
346 347
            self._local_scopes = self._share_vars_from._executor.local_scopes()
        else:
348
            assert scope is not None, ""
X
polish  
Xin Pan 已提交
349
            self._local_scopes = []
350

C
chengduo 已提交
351
        assert isinstance(places, tuple) or isinstance(places, list), \
352
            "Currently , The places type can only be list or tuple, but the input type is {}.".format(type(places))
C
chengduo 已提交
353 354 355 356 357 358 359

        if self._build_strategy is None:
            self._build_strategy = BuildStrategy()
        self._build_strategy.is_distribution = _is_pserver_mode(self._program)

        if self._exec_strategy is None:
            self._exec_strategy = ExecutionStrategy()
360
        self._exec_strategy._use_device = use_device
361 362

        if self._exec_strategy.num_threads == 0:
363
            if self._exec_strategy._use_device == DeviceType.CUDA:
364 365
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
C
chengduo 已提交
366
                self._exec_strategy.num_threads = len(places) * 4
367
            elif self._exec_strategy._use_device == DeviceType.XPU:
368 369
                # Currently only single thread is supported in Kunlun XPU.
                self._exec_strategy.num_threads = 1
370
            else:
C
chengduo 已提交
371 372 373 374 375 376
                self._exec_strategy.num_threads = len(places) * 2

        if self._build_strategy.num_trainers > 1:
            assert self._is_data_parallel, \
                "If you use multi-trainer to train the model, you should use "\
                "the data parallel model, i.e. calling with_data_parallel function."
377

X
Xin Pan 已提交
378 379
        # TODO(wuyi): trainer endpoings should be passed in through
        # build_strategy, not program.xxx.
380
        # TODO(gongwb): let user to set them once.
X
Xin Pan 已提交
381 382 383
        if self._program and self._build_strategy.num_trainers > 1 and \
                self._program._trainers_endpoints:
            tps = self._program._trainers_endpoints
D
dzhwinter 已提交
384

385
            assert self._build_strategy.num_trainers == len(
386
                tps), "The trainer numbers is not equal to endpoint numbers."
X
Xin Pan 已提交
387 388
            self._build_strategy.trainers_endpoints = tps

389 390
        if self._program:
            self._build_strategy.nccl_comm_num = self._program._nccl_comm_num
391 392
            self._build_strategy.use_hierarchical_allreduce = self._program._use_hierarchical_allreduce
            self._build_strategy.hierarchical_allreduce_inter_nranks = self._program._hierarchical_allreduce_inter_nranks
393

Q
qingqing01 已提交
394 395 396
        if self._build_strategy.sync_batch_norm:
            self._build_strategy.enable_sequential_execution = True

397
        if self._program is not None and self._program._enable_dgc:
398
            assert self._exec_strategy._use_device == DeviceType.CUDA, "DGC only used under CUDA environment."
399
            assert self._build_strategy.num_trainers * len(
400
                places) > 1, "DGC is not avaliable for single card training."
401
            assert self._build_strategy.reduce_strategy == BuildStrategy.ReduceStrategy.AllReduce, "DGC \
402
                only can be used for AllReduce BuildStrategy."
403 404 405 406

            # DGC doesn't support fuse for now, close fuse.
            self._build_strategy.fuse_all_reduce_ops = False

X
Xin Pan 已提交
407
        self._persistable_vars = []
Z
Zhen Wang 已提交
408 409 410
        for node in self._graph.nodes():
            if node.is_var() and node.var() is not None and node.var().persistable() and \
                    node.var().type() != core.VarDesc.VarType.RAW:
411 412 413 414
                name = cpt.to_text(node.name())
                if self._program is not None and _should_broadcast_or_not_exists(
                        self._program, name):
                    self._persistable_vars.append(cpt.to_text(node.name()))
415

C
chengduo 已提交
416 417
        places = list(map(_place_obj, places))

Y
Yan Xu 已提交
418 419 420 421 422 423 424 425 426 427 428
        # ParallelExecutor would broadcast all the parameters during initializing.
        # The parameters of each process should be in the same ordered for the data-parallelism
        # distributed training to keep the broadcast correct.
        self._persistable_vars = list(set(self._persistable_vars))
        self._persistable_vars.sort()

        return core.ParallelExecutor(
            places, self._persistable_vars,
            cpt.to_text(self._loss_name)
            if self._loss_name else six.u(''), self._scope, self._local_scopes,
            self._exec_strategy, self._build_strategy, self._graph)
429

F
flame 已提交
430 431 432
    def _compile_inference(self):
        return core.create_paddle_predictor(self._infer_config)

433
    def _compile(self, scope, place):
X
Xin Pan 已提交
434 435 436 437 438 439 440 441 442 443
        """Compile the program based on the configs.

        Args:
            scope: The variables (resources) that are associated with
               this compiled program.
            place: The location that the compiled program will be run on.

        Returns:
            self
        """
444
        if self._compiled:
X
polish  
Xin Pan 已提交
445
            if scope and self._scope != scope:
446
                raise ValueError("Cannot compile program with different scope.")
S
sneaxiy 已提交
447
            if place and not self._place._equals(place):
448
                raise ValueError("Cannot compile program with different place.")
449
            return self
X
fix  
Xin Pan 已提交
450
        self._compiled = True
451 452 453

        self._scope = scope
        self._place = place
C
chengduo 已提交
454 455

        if self._is_inference:
F
flame 已提交
456
            self._executor = self._compile_inference()
457
        else:
C
chengduo 已提交
458 459 460 461
            if self._is_data_parallel:
                self._places = self._get_places(self._place, self._places)
            else:
                self._places = [self._place]
462 463 464 465 466 467 468 469 470

            # Todo(liym27):If optimizer is used in control flow,
            #  training on multi-places is not supported now, will
            #  be supported later.
            if len(self._places) > 1 and \
                    _has_optimizer_in_control_flow(self._program):
                raise NotImplementedError(
                    "If optimizer is used in control flow, "
                    "training on multi-places is not supported now.")
471
            if isinstance(self._place, core.CUDAPlace):
472
                use_device = DeviceType.CUDA
473
            elif isinstance(self._place, core.XPUPlace):
474
                use_device = DeviceType.XPU
475
            else:
476
                use_device = DeviceType.CPU
C
chengduo 已提交
477
            self._executor = self._compile_data_parallel(
478
                use_device=use_device, scope=self._scope, places=self._places)
479
        return self
C
chengduo 已提交
480 481 482 483 484 485

    def _get_places(self, place, place_list):
        has_set_place = (place_list is not None)
        if has_set_place:
            for p in place_list:
                assert p._type() == place._type(), \
486
                    "Place type not match. You may set wrong type of places."
C
chengduo 已提交
487
        else:
488 489 490 491 492 493
            if isinstance(place, core.CUDAPlace):
                place_list = cuda_places()
            elif isinstance(place, core.XPUPlace):
                place_list = xpu_places()
            else:
                place_list = cpu_places()
494
        assert place_list, "No places for execution."
C
chengduo 已提交
495
        return place_list