test_pool2d_api.py 20.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
F
From00 已提交
16
import paddle
17
import numpy as np
F
From00 已提交
18
import paddle.fluid as fluid
19
import paddle.fluid.core as core
F
From00 已提交
20 21
from op_test import OpTest
from paddle.fluid.framework import _test_eager_guard
X
xiaoting 已提交
22
from paddle.nn.functional import avg_pool2d, max_pool2d
F
From00 已提交
23
from test_pool2d_op import adaptive_start_index, adaptive_end_index, pool2D_forward_naive, avg_pool2D_forward_naive, max_pool2D_forward_naive
24 25


C
cnn 已提交
26
class TestPool2D_API(unittest.TestCase):
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_avg_static_results(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(
                name="input", shape=[2, 3, 32, 32], dtype="float32")
            result = avg_pool2d(input, kernel_size=2, stride=2, padding=0)

            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            result_np = pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                pool_type='avg')

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
            self.assertTrue(np.allclose(fetches[0], result_np))

    def check_avg_dygraph_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = avg_pool2d(input, kernel_size=2, stride=2, padding=0)

            result_np = pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                pool_type='avg')
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
67
            avg_pool2d_dg = paddle.nn.layer.AvgPool2D(
68 69 70 71
                kernel_size=2, stride=2, padding=0)
            result = avg_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

D
Double_V 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    def check_avg_dygraph_padding_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = avg_pool2d(
                input, kernel_size=2, stride=2, padding=1, ceil_mode=False)

            result_np = avg_pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[1, 1],
                ceil_mode=False,
                exclusive=False)
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
88
            avg_pool2d_dg = paddle.nn.layer.AvgPool2D(
D
Double_V 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
                kernel_size=2, stride=2, padding=1, ceil_mode=False)
            result = avg_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_avg_dygraph_ceilmode_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = avg_pool2d(
                input, kernel_size=2, stride=2, padding=0, ceil_mode=True)

            result_np = avg_pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                ceil_mode=True)
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
108
            avg_pool2d_dg = paddle.nn.layer.AvgPool2D(
D
Double_V 已提交
109 110 111 112
                kernel_size=2, stride=2, padding=0, ceil_mode=True)
            result = avg_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    def check_max_static_results(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(
                name="input", shape=[2, 3, 32, 32], dtype="float32")
            result = max_pool2d(input, kernel_size=2, stride=2, padding=0)

            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            result_np = pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                pool_type='max')

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
            self.assertTrue(np.allclose(fetches[0], result_np))

    def check_max_dygraph_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = max_pool2d(
138
                input, kernel_size=2, stride=2, padding=0, return_mask=False)
139 140 141 142 143 144 145 146 147

            result_np = pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                pool_type='max')
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
148
            max_pool2d_dg = paddle.nn.layer.MaxPool2D(
149 150 151 152
                kernel_size=2, stride=2, padding=0)
            result = max_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

D
Double_V 已提交
153 154 155 156 157 158 159 160 161 162
    def check_max_dygraph_nhwc_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(
                np.transpose(input_np, [0, 2, 3, 1]))
            result = max_pool2d(
                input,
                kernel_size=2,
                stride=2,
                padding=0,
163
                return_mask=False,
D
Double_V 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
                data_format="NHWC")

            result_np = pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                pool_type='max')
            self.assertTrue(
                np.allclose(
                    np.transpose(result.numpy(), [0, 3, 1, 2]), result_np))

    def check_max_dygraph_padding_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = max_pool2d(
                input, kernel_size=2, stride=2, padding=1, ceil_mode=False)

            result_np = max_pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[1, 1],
                ceil_mode=False,
                exclusive=False)
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
192
            max_pool2d_dg = paddle.nn.layer.MaxPool2D(
D
Double_V 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
                kernel_size=2, stride=2, padding=1, ceil_mode=False)
            result = max_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_max_dygraph_ceilmode_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = max_pool2d(
                input, kernel_size=2, stride=2, padding=0, ceil_mode=True)

            result_np = max_pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                ceil_mode=True)
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
212
            max_pool2d_dg = paddle.nn.layer.MaxPool2D(
D
Double_V 已提交
213 214 215 216
                kernel_size=2, stride=2, padding=0, ceil_mode=True)
            result = max_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

217 218 219 220 221 222 223 224 225
    def check_max_dygraph_stride_is_none(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result, indices = max_pool2d(
                input,
                kernel_size=2,
                stride=None,
                padding="SAME",
226
                return_mask=True)
227 228 229 230 231 232 233 234 235 236

            result_np = pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                pool_type='max',
                padding_algorithm="SAME")
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
237
            max_pool2d_dg = paddle.nn.layer.MaxPool2D(
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
                kernel_size=2, stride=2, padding=0)
            result = max_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_avg_dygraph_stride_is_none(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = avg_pool2d(
                input, kernel_size=2, stride=None, padding="SAME")

            result_np = pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                pool_type='avg',
                padding_algorithm="SAME")
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
258
            avg_pool2d_dg = paddle.nn.layer.AvgPool2D(
259 260 261 262 263 264 265 266 267 268 269 270 271 272
                kernel_size=2, stride=2, padding=0)
            result = avg_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_max_dygraph_padding(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            padding = [[0, 0], [0, 0], [0, 0], [0, 0]]
            result = max_pool2d(
                input,
                kernel_size=2,
                stride=2,
                padding=padding,
273
                return_mask=False)
274 275 276 277 278 279 280 281 282

            result_np = pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                pool_type='max')
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
283
            max_pool2d_dg = paddle.nn.layer.MaxPool2D(
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
                kernel_size=2, stride=2, padding=0)
            result = max_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_avg_divisor(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            padding = [[0, 0], [0, 0], [0, 0], [0, 0]]
            result = avg_pool2d(
                input,
                kernel_size=2,
                stride=2,
                padding=padding,
                divisor_override=4)

            result_np = pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                pool_type='avg')
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
308
            avg_pool2d_dg = paddle.nn.layer.AvgPool2D(
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
                kernel_size=2, stride=2, padding=0)
            result = avg_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def test_pool2d(self):
        for place in self.places:

            self.check_max_dygraph_results(place)
            self.check_avg_dygraph_results(place)
            self.check_max_static_results(place)
            self.check_avg_static_results(place)
            self.check_max_dygraph_stride_is_none(place)
            self.check_avg_dygraph_stride_is_none(place)
            self.check_max_dygraph_padding(place)
            self.check_avg_divisor(place)
D
Double_V 已提交
324 325 326
            self.check_max_dygraph_padding_results(place)
            self.check_max_dygraph_ceilmode_results(place)
            self.check_max_dygraph_nhwc_results(place)
327

F
From00 已提交
328 329 330 331
    def test_dygraph_final_state_api(self):
        with _test_eager_guard():
            self.test_pool2d()

332

C
cnn 已提交
333
class TestPool2DError_API(unittest.TestCase):
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
    def test_error_api(self):
        def run1():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[0, 1], [0, 0], [0, 0], [0, 0]]
                res_pd = max_pool2d(
                    input_pd, kernel_size=2, stride=2, padding=padding)

        self.assertRaises(ValueError, run1)

        def run2():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[0, 1], [0, 0], [0, 0], [0, 0]]
                res_pd = max_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    data_format='NHWC')

        self.assertRaises(ValueError, run2)

        def run3():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "padding"
                res_pd = max_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    data_format='NHWC')

        self.assertRaises(ValueError, run3)

        def run3_avg():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "padding"
                res_pd = avg_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    data_format='NHWC')

        self.assertRaises(ValueError, run3_avg)

        def run4():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
                res_pd = max_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    ceil_mode=True,
                    data_format='NHWC')

        self.assertRaises(ValueError, run4)

        def run4_avg():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
                res_pd = avg_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    ceil_mode=True,
                    data_format='NHWC')

        self.assertRaises(ValueError, run4_avg)

        def run5():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "padding"
                res_pd = avg_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    data_format='NHWC')

        self.assertRaises(ValueError, run5)

        def run6():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
                res_pd = avg_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    ceil_mode=True,
                    data_format='NHWC')

        self.assertRaises(ValueError, run6)

        def run7():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
                res_pd = avg_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    ceil_mode=False,
                    data_format='NNNN')

        self.assertRaises(ValueError, run7)

        def run8():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
                res_pd = max_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    ceil_mode=False,
                    data_format='NNNN')

        self.assertRaises(ValueError, run8)

D
Double_V 已提交
486 487 488 489 490 491 492 493 494 495 496 497
        def run9():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = max_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=0,
                    ceil_mode=False,
                    data_format='NHWC',
498
                    return_mask=True)
D
Double_V 已提交
499 500 501

        self.assertRaises(ValueError, run9)

D
Double_V 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
        def run_kernel_out_of_range():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = avg_pool2d(
                    input_pd,
                    kernel_size=[-1, 2],
                    stride=2,
                    padding=0,
                    ceil_mode=False,
                    data_format='NHWC')

        self.assertRaises(ValueError, run_kernel_out_of_range)

        def run_stride_out_of_range():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = avg_pool2d(
                    input_pd,
                    kernel_size=3,
                    stride=[0, 2],
                    padding=0,
                    ceil_mode=False,
                    data_format='NHWC')

        self.assertRaises(ValueError, run_stride_out_of_range)

F
From00 已提交
532 533 534 535
    def test_dygraph_final_state_api(self):
        with _test_eager_guard():
            self.test_error_api()

536 537 538

if __name__ == '__main__':
    unittest.main()