test_functional_conv3d_transpose.py 18.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
F
From00 已提交
16
import numpy as np
17 18
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
F
From00 已提交
19
import paddle.nn.functional as F
20
import unittest
F
From00 已提交
21 22
from paddle import fluid
from paddle.fluid.framework import _test_eager_guard
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
from unittest import TestCase


class TestFunctionalConv3DTranspose(TestCase):
    batch_size = 4
    spatial_shape = (8, 8, 8)
    dtype = "float32"
    output_size = None

    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"

    def prepare(self):
        if isinstance(self.filter_shape, int):
            filter_shape = (self.filter_shape, ) * 3
        else:
            filter_shape = tuple(self.filter_shape)

        self.weight = np.random.uniform(
            -1, 1, (self.in_channels, self.out_channels // self.groups
                    ) + filter_shape).astype(self.dtype)
        if not self.no_bias:
            self.bias = np.random.uniform(-1, 1, (
                self.out_channels, )).astype(self.dtype)

        self.channel_last = (self.data_format == "NDHWC")
        if self.channel_last:
            self.input_shape = (self.batch_size, ) + self.spatial_shape + (
                self.in_channels, )
        else:
            self.input_shape = (self.batch_size, self.in_channels
                                ) + self.spatial_shape

        self.input = np.random.uniform(-1, 1,
                                       self.input_shape).astype(self.dtype)

    def static_graph_case_1(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                if self.channel_last:
                    x = fluid.data(
                        "input", (-1, -1, -1, -1, self.in_channels),
                        dtype=self.dtype)
                else:
                    x = fluid.data(
                        "input", (-1, self.in_channels, -1, -1, -1),
                        dtype=self.dtype)
                y = fluid.layers.conv3d_transpose(
                    x,
                    self.out_channels,
                    output_size=self.output_size,
                    filter_size=self.filter_shape,
                    stride=self.stride,
                    padding=self.padding,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=I.NumpyArrayInitializer(self.weight),
                    bias_attr=False
                    if self.no_bias else I.NumpyArrayInitializer(self.bias),
                    act=self.act,
                    data_format=self.data_format)
        exe = fluid.Executor(self.place)
        exe.run(start)
        out, = exe.run(main, feed={"input": self.input}, fetch_list=[y])
        return out

    def static_graph_case_2(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                if self.channel_last:
                    x = x = fluid.data(
                        "input", (-1, -1, -1, -1, self.in_channels),
                        dtype=self.dtype)
                else:
                    x = fluid.data(
                        "input", (-1, self.in_channels, -1, -1, -1),
                        dtype=self.dtype)
                weight = fluid.data(
                    "weight", self.weight.shape, dtype=self.dtype)
                if not self.no_bias:
                    bias = fluid.data("bias", self.bias.shape, dtype=self.dtype)
117
                y = F.conv3d_transpose(
118 119 120 121 122 123 124 125
                    x,
                    weight,
                    None if self.no_bias else bias,
                    output_size=self.output_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
L
LielinJiang 已提交
126 127 128
                    data_format=self.data_format)
                if self.act == 'sigmoid':
                    y = F.sigmoid(y)
129 130 131 132 133 134 135 136 137 138 139 140 141
        exe = fluid.Executor(self.place)
        exe.run(start)
        feed_dict = {"input": self.input, "weight": self.weight}
        if not self.no_bias:
            feed_dict["bias"] = self.bias
        out, = exe.run(main, feed=feed_dict, fetch_list=[y])
        return out

    def dygraph_case(self):
        with dg.guard(self.place):
            x = dg.to_variable(self.input)
            weight = dg.to_variable(self.weight)
            bias = None if self.no_bias else dg.to_variable(self.bias)
142
            y = F.conv3d_transpose(
143 144 145 146 147 148 149 150
                x,
                weight,
                bias,
                output_size=self.output_size,
                padding=self.padding,
                stride=self.stride,
                dilation=self.dilation,
                groups=self.groups,
L
LielinJiang 已提交
151 152 153
                data_format=self.data_format)
            if self.act == 'sigmoid':
                y = F.sigmoid(y)
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
            out = y.numpy()
        return out

    def _test_identity(self):
        self.prepare()
        out1 = self.static_graph_case_1()
        out2 = self.static_graph_case_2()
        out3 = self.dygraph_case()
        np.testing.assert_array_almost_equal(out1, out2)
        np.testing.assert_array_almost_equal(out2, out3)

    def test_identity_cpu(self):
        self.place = fluid.CPUPlace()
        self._test_identity()

F
From00 已提交
169 170 171 172
    def test_identity_cpu_check_eager(self):
        with _test_eager_guard():
            self.test_identity_cpu()

173 174 175 176 177 178
    @unittest.skipIf(not fluid.core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    def test_identity_gpu(self):
        self.place = fluid.CUDAPlace(0)
        self._test_identity()

F
From00 已提交
179 180 181 182 183 184
    @unittest.skipIf(not fluid.core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    def test_identity_gpu_check_eager(self):
        with _test_eager_guard():
            self.test_identity_gpu()

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

class TestFunctionalConv3DTransposeError(TestCase):
    batch_size = 4
    spatial_shape = (8, 8, 8)
    dtype = "float32"
    output_size = None

    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = "not_valid"
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"

    def test_exception(self):
        self.prepare()
        with self.assertRaises(ValueError):
            self.static_graph_case()

    def prepare(self):
        if isinstance(self.filter_shape, int):
            filter_shape = (self.filter_shape, ) * 3
        else:
            filter_shape = tuple(self.filter_shape)
        self.weight_shape = (self.in_channels, self.out_channels // self.groups
                             ) + filter_shape
        self.bias_shape = (self.out_channels, )

    def static_graph_case(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                self.channel_last = self.data_format == "NDHWC"
                if self.channel_last:
                    x = x = fluid.data(
                        "input", (-1, -1, -1, -1, self.in_channels),
                        dtype=self.dtype)
                else:
                    x = fluid.data(
                        "input", (-1, self.in_channels, -1, -1, -1),
                        dtype=self.dtype)
                weight = fluid.data(
                    "weight", self.weight_shape, dtype=self.dtype)
                if not self.no_bias:
                    bias = fluid.data("bias", self.bias_shape, dtype=self.dtype)
236
                y = F.conv3d_transpose(
237 238 239 240 241 242 243 244
                    x,
                    weight,
                    None if self.no_bias else bias,
                    output_size=self.output_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
L
LielinJiang 已提交
245 246 247
                    data_format=self.data_format)
                if self.act == 'sigmoid':
                    y = F.sigmoid(y)
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496


class TestFunctionalConv3DTransposeCase2(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


class TestFunctionalConv3DTransposeCase3(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"


class TestFunctionalConv3DTransposeCase4(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = "same"
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = True
        self.act = "sigmoid"
        self.data_format = "NDHWC"


class TestFunctionalConv3DTransposeCase5(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = "valid"
        self.stride = (1, 2, 1)
        self.dilation = (2, 1, 1)
        self.groups = 2
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"


class TestFunctionalConv3DTransposeCase6(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = "valid"
        self.stride = (1, 2, 1)
        self.dilation = 1
        self.groups = 4
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"


class TestFunctionalConv3DTransposeCase7(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = "valid"
        self.output_size = (10, 17, 10)
        self.stride = (1, 2, 1)
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


class TestFunctionalConv3DTransposeCase8(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [[0, 0], [1, 2], [1, 2], [2, 1], [0, 0]]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"


class TestFunctionalConv3DTransposeCase9(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [[0, 0], [0, 0], [1, 1], [1, 1], [2, 2]]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


class TestFunctionalConv3DTransposeCase10(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [1, 1, 2, 2, 1, 1]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


class TestFunctionalConv3DTransposeCase11(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [1, 2, 1]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


class TestFunctionalConv3DTransposeErrorCase2(
        TestFunctionalConv3DTransposeError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [1, 2, 2, 1, 3]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"


class TestFunctionalConv3DTransposeErrorCase3(
        TestFunctionalConv3DTransposeError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [[0, 0], [0, 0], [1, 1], [1, 2], [2, 1]]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"


class TestFunctionalConv3DTransposeErrorCase4(
        TestFunctionalConv3DTransposeError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [[0, 0], [1, 2], [1, 1], [0, 0], [2, 1]]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


class TestFunctionalConv3DTransposeErrorCase5(
        TestFunctionalConv3DTransposeError):
    def setUp(self):
        self.in_channels = -2
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


class TestFunctionalConv3DTransposeErrorCase7(
        TestFunctionalConv3DTransposeError):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.output_size = "not_valid"
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


class TestFunctionalConv3DTransposeErrorCase8(
        TestFunctionalConv3DTransposeError):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "not_valid"


class TestFunctionalConv3DTransposeErrorCase9(
        TestFunctionalConv3DTransposeError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
class TestFunctionalConv3DTransposeErrorCase10(TestCase):
    def setUp(self):
        self.input = np.array([])
        self.filter = np.array([])
        self.num_filters = 0
        self.filter_size = 0
        self.bias = None
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.data_format = "NCDHW"

    def static_graph_case(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                x = fluid.data("input", self.input.shape, dtype=paddle.float32)
                y = fluid.layers.conv3d_transpose(
                    x,
                    self.num_filters,
                    self.filter_size,
                    stride=self.stride,
                    padding=self.padding,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=I.NumpyArrayInitializer(self.filter),
                    bias_attr=False if self.bias is None else
                    I.NumpyArrayInitializer(self.bias),
                    act=None,
                    data_format=self.data_format)
        exe = fluid.Executor()
        exe.run(start)
        out, = exe.run(main, feed={"input": self.input}, fetch_list=[y])
        return out

    def dygraph_case(self):
        with dg.guard():
            x = dg.to_variable(self.input, dtype=paddle.float32)
            w = dg.to_variable(self.filter, dtype=paddle.float32)
            b = None if self.bias is None else dg.to_variable(
                self.bias, dtype=paddle.float32)
            y = F.conv3d_transpose(
                x,
                w,
                b,
                padding=self.padding,
                stride=self.stride,
                dilation=self.dilation,
                groups=self.groups,
                data_format=self.data_format)

    def test_dygraph_exception(self):
        with self.assertRaises(ValueError):
            self.dygraph_case()

F
From00 已提交
554 555 556 557
    def test_dygraph_exception_check_eager(self):
        with _test_eager_guard():
            self.test_dygraph_exception()

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
    def test_static_exception(self):
        with self.assertRaises(ValueError):
            self.static_graph_case()


class TestFunctionalConv3DTransposeErrorCase11(
        TestFunctionalConv3DTransposeErrorCase10):
    def setUp(self):
        self.input = np.random.randn(1, 3, 3, 3, 3)
        self.filter = np.random.randn(3, 3, 1, 1, 1)
        self.num_filters = 3
        self.filter_size = 1
        self.bias = None
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 0
        self.data_format = "NCDHW"


578 579
if __name__ == "__main__":
    unittest.main()