framework.py 245.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
J
jianghaicheng 已提交
50
    'ipu_shard_guard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
54
    'mlu_places',
S
sneaxiy 已提交
55
    'cuda_pinned_places',
J
Jiabin Yang 已提交
56
    '_non_static_mode',
L
lujun 已提交
57
    'in_dygraph_mode',
58
    'is_compiled_with_cinn',
C
chengduo 已提交
59
    'is_compiled_with_cuda',
60
    'is_compiled_with_rocm',
61
    'is_compiled_with_xpu',
62
    'is_compiled_with_npu',
63
    'Variable',
64
    'require_version',
65
    'device_guard',
G
guofei 已提交
66 67
    'set_flags',
    'get_flags',
68
]
Y
Yu Yang 已提交
69

Q
qiaolongfei 已提交
70 71 72 73
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
74 75
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
76
_dygraph_tracer_ = None
77
_in_eager_mode_ = (os.environ.get('FLAGS_enable_eager_mode') == '1')
78
_global_expected_place_ = None
79
_current_device = None
80
global_prog_seed = 0
81
_current_pipeline_stage = None
82
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
83
_already_patch_varbase = False
84
_global_flags_ = core.globals()
J
Jiabin Yang 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

# Some explanation of our execution system 2022.03
# For now we have 3 kinds of execution system, since we refactored dygraph mode to 
# build a fast execution system for dynamic mode. But we can't just remove all legacy
# code once we present the new system for some historical reason. That's why we have 
# these flags.
# 
# 1. _non_static_mode():
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode. 
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
# 
# They have a relation ship as below:
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in 
# dygraph mode means you are not in _in_legacy_dygraph.
# 
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
160 161 162


@signature_safe_contextmanager
J
Jiabin Yang 已提交
163 164 165
def _test_eager_guard(place=None):
    _disable_legacy_dygraph()
    from paddle import _C_ops
166
    _C_ops.switch_to_eager_ops()
167
    global _already_patch_eager_tensor
J
Jiabin Yang 已提交
168 169 170
    global _already_patch_varbase
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase
171 172
    if not _already_patch_eager_tensor:
        monkey_patch_varbase()
173
        monkey_patch_math_varbase()
174 175 176 177 178 179

        # Ugly setting
        from paddle.tensor.manipulation import fill_, zero_
        setattr(core.eager.Tensor, 'fill_', fill_)
        setattr(core.eager.Tensor, 'zero_', zero_)

180
        _already_patch_eager_tensor = True
181
    try:
J
Jiabin Yang 已提交
182
        yield
183
    finally:
J
Jiabin Yang 已提交
184 185 186 187 188
        _enable_legacy_dygraph()
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()
            _already_patch_varbase = True
189
        _C_ops.switch_to_core_ops()
190 191


J
jianghaicheng 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
global_ipu_index = None
global_ipu_stage = None
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
def ipu_shard_guard(index=None, stage=None):
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is None, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
            The sharded model will be computed from small to large. The default value is None, 
            which means no pipelining computation order and run Ops in terms of graph.
    
    **Note**:
    Only if the enable_manual_shard=True, the ‘index’ is able to be set not None. Please refer 
    to :code:`paddle.static.IpuStrategy` . 
    Only if the enable_pipelining=True, the ‘stage’ is able to be set not None. Please refer 
    to :code:`paddle.static.IpuStrategy` .
    A index is allowed to match none stage or a stage. A stage is only allowed to match a new or 
    duplicated index.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


358 359
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
360 361
        assert not _non_static_mode(
        ), "We don't support %s in dynamic graph mode" % func.__name__
362 363 364 365 366 367 368
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
369
        assert _non_static_mode(
370 371 372 373 374 375 376 377
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
378
        assert not _non_static_mode(
379
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
380 381 382 383 384
        return func(*args, **kwargs)

    return __impl__


385 386 387 388 389
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


390 391 392 393 394 395
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
396
# same base class.
397 398 399
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
400 401 402 403 404
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
405 406 407 408

    return __impl__


T
tangwei12 已提交
409 410
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


428 429
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
430
static_only = wrap_decorator(_static_only_)
431
fake_interface_only = wrap_decorator(_fake_interface_only_)
432 433


L
lujun 已提交
434 435
def _dygraph_tracer():
    return _dygraph_tracer_
436

W
Wu Yi 已提交
437

438 439 440 441
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
442
def _current_expected_place():
443 444 445
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
446 447 448 449 450 451 452 453 454 455 456
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
457 458 459 460 461 462 463 464 465 466 467 468
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
469 470 471 472 473 474 475 476 477 478 479 480
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.MLUPlace(0)
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
496
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
497 498


L
Leo Chen 已提交
499 500 501 502
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
503

L
Leo Chen 已提交
504 505 506 507 508 509 510 511 512 513 514 515
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
516
def _cpu_num():
517
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
518 519 520 521 522 523 524 525
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
526
        os.environ['CPU_NUM'] = str(1)
527
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
528 529 530 531 532 533 534 535 536 537
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
538 539


540 541 542 543 544 545 546 547 548
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


549 550 551 552 553 554 555 556 557
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


558 559 560 561 562 563 564 565 566
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
637 638 639 640
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

641
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
642 643 644 645

    Examples:
        .. code-block:: python

646
            import paddle
647
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
648 649 650 651
    """
    return core.is_compiled_with_cuda()


652 653 654 655 656 657 658 659 660 661
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
662
            support_gpu = paddle.device.is_compiled_with_rocm()
663 664 665 666
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
667
def cuda_places(device_ids=None):
L
lujun 已提交
668
    """
669 670 671 672
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
673
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
674 675

    If :code:`device_ids` is None, environment variable of
676
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
677
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
678
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
679
    If :code:`FLAGS_selected_gpus` is not set, all visible
680
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
681 682

    If :code:`device_ids` is not None, it should be the device
683
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
684
    the returned list would be 
C
Chen Weihang 已提交
685
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
686

687
    Parameters:
688
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
689 690

    Returns:
C
Chen Weihang 已提交
691
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
692 693 694 695

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
696 697
            import paddle
            import paddle.static as static
T
tangwei12 已提交
698

699 700
            # required: gpu
            
C
Chen Weihang 已提交
701 702 703
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
704 705

    """
S
sneaxiy 已提交
706 707 708
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
709
        device_ids = _cuda_ids()
S
sneaxiy 已提交
710 711 712 713 714
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


715 716 717 718
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
719 720 721 722 723 724 725 726 727 728 729
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
730 731 732 733 734 735 736
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
737

738 739
            # required: xpu

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
796
def cpu_places(device_count=None):
L
lujun 已提交
797
    """
C
Chen Weihang 已提交
798
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
799

S
add doc  
sneaxiy 已提交
800 801
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
802 803
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
804 805
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
806

807 808
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
809 810

    Returns:
C
Chen Weihang 已提交
811
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
812 813 814 815

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
816 817
            import paddle
            import paddle.static as static
T
tangwei12 已提交
818

C
Chen Weihang 已提交
819 820 821
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
822 823
    """

S
sneaxiy 已提交
824 825 826 827 828 829
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
830
    """
831
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
832 833 834

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
835 836 837 838
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
839

840 841
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
842 843

    Returns:
844
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
845 846 847 848

    Examples:
        .. code-block:: python

849
            import paddle.fluid as fluid
L
lujun 已提交
850 851 852 853 854
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
855 856 857
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
858 859
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
860 861


862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
930
@signature_safe_contextmanager
931 932
def name_scope(prefix=None):
    """
933 934
    :api_attr: Static Graph

935
    Generate hierarchical name prefix for the operators in Static Graph.
936

T
Tao Luo 已提交
937 938 939
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
940
        Don't use it in dygraph, since it will cause memory leak.
941 942

    Args:
T
Tao Luo 已提交
943
        prefix(str, optional): prefix. Default is none.
944 945 946

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
947

948 949 950
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
951
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
952
             b = a + 1
953
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
954
                c = b * 1
955
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
956
                d = c / 1
957 958 959
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
960 961 962
                g = f - 1

          # Op are created in the default main program.  
963
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
979 980
    """
    # TODO(panyx0718): Only [0-9a-z].
981
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
982
    if _non_static_mode():
L
Leo Chen 已提交
983 984
        yield
    else:
T
tianshuo78520a 已提交
985
        assert prefix, "namescope prefix can not be empty."
986 987
        global _name_scope
        _name_scope = _name_scope.child(prefix)
988 989 990 991
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
992 993 994 995 996 997 998 999 1000 1001 1002 1003


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1004 1005 1006
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1007 1008 1009 1010


def grad_var_name(var_name):
    """
1011 1012
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1013 1014 1015
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1016

1017
def convert_np_dtype_to_dtype_(np_dtype):
1018 1019
    """
    Convert the data type in numpy to the data type in Paddle
1020

1021
    Args:
1022
        np_dtype(np.dtype): the data type in numpy.
1023

1024 1025
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
1026 1027

    """
1028 1029
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
1030
        return core.VarDesc.VarType.FP32
1031
    elif dtype == np.float64:
1032
        return core.VarDesc.VarType.FP64
1033
    elif dtype == np.float16:
1034
        return core.VarDesc.VarType.FP16
1035
    elif dtype == np.int32:
1036
        return core.VarDesc.VarType.INT32
1037
    elif dtype == np.int16:
1038
        return core.VarDesc.VarType.INT16
1039
    elif dtype == np.int64:
1040
        return core.VarDesc.VarType.INT64
1041
    elif dtype == np.bool:
1042
        return core.VarDesc.VarType.BOOL
1043
    elif dtype == np.uint16:
1044 1045 1046
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1047 1048
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1049 1050
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1051 1052 1053 1054
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1055
    else:
M
minqiyang 已提交
1056
        raise ValueError("Not supported numpy dtype %s" % dtype)
1057 1058 1059


def dtype_is_floating(dtype):
1060 1061 1062
    """
    Check the data type is floating or not.
    Args:
1063
        dtype(np.dtype|core.VarDesc.VarType): data type.
1064 1065 1066 1067 1068
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1069
    if not isinstance(dtype, core.VarDesc.VarType):
1070 1071
        dtype = convert_np_dtype_to_dtype_(dtype)

1072 1073 1074 1075
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1076 1077


Y
Yang Yang(Tony) 已提交
1078
def _debug_string_(proto, throw_on_error=True):
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1090
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1091
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
1092 1093
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
1094 1095 1096
    return proto.__str__()


1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1107
    if _in_eager_mode_:
1108
        eager_tensor = core.eager.Tensor(
1109 1110 1111 1112 1113 1114
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [], name, type
            if type else core.VarDesc.VarType.LOD_TENSOR, True
            if persistable else False)
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1115 1116 1117 1118 1119
    else:
        return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                            list(shape) if shape else [], name, type
                            if type else core.VarDesc.VarType.LOD_TENSOR, True
                            if persistable else False)
1120 1121 1122 1123 1124 1125 1126


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1127
            return issubclass(t, core.eager.Tensor)
1128
        else:
J
Jiabin Yang 已提交
1129 1130
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1131 1132 1133 1134 1135 1136 1137 1138
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1139
            return issubclass(t, EagerParamBase)
1140
        else:
J
Jiabin Yang 已提交
1141 1142
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1143 1144 1145 1146
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1147
class Variable(object):
1148
    """
J
Jiabin Yang 已提交
1149
    **Notes**:
1150
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1151

1152 1153
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1154 1155 1156
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1157
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1158 1159
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1160

1161
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1162
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1163

T
tianshuo78520a 已提交
1164
    Most of a Variable's member variables can be set to be None. It mean
1165
    it is not available or will be specified later.
1166

1167
    Examples:
1168 1169
        In Static Graph Mode:

1170 1171
        .. code-block:: python

1172
            import paddle.fluid as fluid
1173
            cur_program = fluid.Program()
1174 1175 1176 1177
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1178

J
Jiabin Yang 已提交
1179
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1180 1181 1182 1183 1184 1185 1186 1187 1188

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1189 1190
    """

Y
Yu Yang 已提交
1191 1192
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1193
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1194 1195 1196 1197
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1198
                 capacity=None,
Q
QI JUN 已提交
1199
                 persistable=None,
F
fengjiayi 已提交
1200
                 error_clip=None,
Y
Yu Yang 已提交
1201
                 stop_gradient=False,
F
fengjiayi 已提交
1202
                 is_data=False,
H
Huihuang Zheng 已提交
1203
                 need_check_feed=False,
H
hong 已提交
1204
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1205
                 **kwargs):
Y
Yu Yang 已提交
1206 1207
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1208
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1209

Y
Yu Yang 已提交
1210
        if dtype is not None:
1211
            if not isinstance(dtype, core.VarDesc.VarType):
1212
                dtype = convert_np_dtype_to_dtype_(dtype)
1213

S
Steffy-zxf 已提交
1214 1215 1216 1217
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1218 1219
        self.belong_to_optimizer = belong_to_optimizer

1220 1221 1222 1223 1224
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1225

1226 1227 1228
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1229

1230 1231 1232
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1233 1234
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1235 1236
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1237

1238
        if shape is not None:
1239
            if is_new_var:
1240 1241 1242 1243 1244 1245
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1246 1247
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1248 1249 1250 1251 1252 1253 1254
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1255 1256
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1257 1258 1259 1260 1261 1262 1263 1264 1265
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1266 1267
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1268 1269 1270 1271 1272 1273 1274 1275 1276
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1277 1278
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1279 1280
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1281

1282 1283
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1284

1285 1286 1287 1288 1289 1290 1291
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1292

1293 1294
        self.block.vars[name] = self
        self.op = None
1295
        self.stop_gradient = stop_gradient
1296
        self.is_data = is_data
Y
Yu Yang 已提交
1297

1298 1299 1300
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1301 1302
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1303

1304
        Returns:
J
Jiabin Yang 已提交
1305
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1306 1307 1308 1309

        Examples:
            .. code-block:: python

1310
                import paddle
1311

1312 1313 1314 1315
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1316

1317 1318
                # create a detached Variable
                y = x.detach()
1319
        """
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1335

1336
    @fake_interface_only
1337
    def numpy(self):
1338
        """
J
Jiabin Yang 已提交
1339
        **Notes**:
T
tianshuo78520a 已提交
1340
            **This API is ONLY available in Dygraph mode**
1341

J
Jiabin Yang 已提交
1342
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1343 1344 1345 1346 1347

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1348
            ndarray: dtype is same as current Variable
1349 1350 1351 1352 1353 1354

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1355
                from paddle.fluid.dygraph import Linear
1356 1357 1358 1359
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1360
                    linear = Linear(32, 64)
1361
                    data = to_variable(data)
1362
                    x = linear(data)
1363 1364 1365
                    print(x.numpy())

        """
1366
        pass
1367

1368
    @fake_interface_only
1369
    def backward(self, retain_graph=False):
1370
        """
J
Jiabin Yang 已提交
1371
        **Notes**:
T
tianshuo78520a 已提交
1372
            **This API is ONLY available in Dygraph mode**
1373

1374
        Run backward of current Graph which starts from current Tensor.
1375

J
Jiabin Yang 已提交
1376
        Args:
1377 1378 1379 1380
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1381

J
Jiabin Yang 已提交
1382 1383
        Returns:
            NoneType: None
1384 1385 1386 1387 1388

        Examples:
            .. code-block:: python

                import numpy as np
1389 1390
                import paddle
                paddle.disable_static()
1391 1392

                x = np.ones([2, 2], np.float32)
1393 1394 1395 1396 1397 1398 1399
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1400 1401
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1402
                loss.backward()
1403 1404

        """
1405
        pass
1406

1407
    @fake_interface_only
1408
    def gradient(self):
1409
        """
J
Jiabin Yang 已提交
1410
        **Notes**:
T
tianshuo78520a 已提交
1411
            **This API is ONLY available in Dygraph mode**
1412 1413 1414

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1415
        Returns:
1416
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1417 1418 1419 1420 1421 1422 1423

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1424
                # example1: return ndarray
1425 1426 1427 1428 1429 1430 1431 1432 1433
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1434
                    loss2.backward()
1435 1436
                    print(loss2.gradient())

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1450
        """
1451
        pass
1452

1453
    @fake_interface_only
1454
    def clear_gradient(self):
1455
        """
J
Jiabin Yang 已提交
1456
        **Notes**:
T
tianshuo78520a 已提交
1457
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1458 1459

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1460

J
Jiabin Yang 已提交
1461
        Clear  (set to ``0`` ) the Gradient of Current Variable
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1480
                    loss2.backward()
1481 1482 1483 1484 1485
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1486
        pass
X
Xin Pan 已提交
1487

1488 1489 1490 1491
    @fake_interface_only
    def register_hook(self, hook):
        pass

1492
    def __str__(self):
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1509 1510
                import paddle
                import paddle.static as static
1511

1512 1513 1514
                paddle.enable_static()

                cur_program = static.Program()
1515 1516 1517 1518 1519 1520
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1521 1522
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1523
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1524 1525
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1526 1527
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1528
        else:
1529 1530
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1531

1532
        if self.is_parameter:
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1543
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1544
        dist_context = get_default_distributed_context()
1545 1546
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1547
            var_str += ", {name} = {value}".format(
1548
                name="dist_attr", value=dist_tensor)
1549

1550
        return var_str
Y
Yang Yang(Tony) 已提交
1551

F
update  
fengjiayi 已提交
1552
    def to_string(self, throw_on_error, with_details=False):
1553 1554 1555
        """
        Get debug string.

J
Jiabin Yang 已提交
1556 1557 1558 1559 1560
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1561

1562 1563
        Returns:
            str: The debug string.
1564 1565 1566 1567 1568

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1569
                import paddle
1570

1571
                paddle.enable_static()
1572 1573 1574 1575 1576
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1577
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1578
                print("=============with detail===============")
1579
                print(new_variable.to_string(True, True))
1580
        """
F
update  
fengjiayi 已提交
1581 1582
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1583
        protostr = self.desc.serialize_to_string()
1584
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1585 1586
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1587
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1588
            for attr_name in additional_attr:
1589 1590 1591
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1592
        return res_str
1593 1594 1595

    __repr__ = __str__

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1623
    @property
1624
    def stop_gradient(self):
J
Jiabin Yang 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1640 1641
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1642 1643 1644
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1645 1646
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1647 1648 1649 1650
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1651
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1652 1653
                assert (out1.gradient() == 0).all()
        """
1654
        return self.desc.stop_gradient()
1655

1656 1657
    @stop_gradient.setter
    def stop_gradient(self, s):
1658
        self.desc.set_stop_gradient(s)
1659

1660 1661
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1683
        return self.desc.persistable()
1684

Y
Yu Yang 已提交
1685 1686
    @persistable.setter
    def persistable(self, p):
1687
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1688

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1714 1715
    @property
    def name(self):
J
Jiabin Yang 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1732
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1733

1734 1735 1736 1737 1738 1739
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1740 1741
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1742

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1754 1755
    @name.setter
    def name(self, new_name):
1756
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1757

Y
Yu Yang 已提交
1758 1759
    @property
    def shape(self):
J
Jiabin Yang 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1777
        # convert to tuple, make it as same as numpy API.
1778
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1779 1780

    @property
F
fengjiayi 已提交
1781
    def dtype(self):
J
Jiabin Yang 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1798
        return self.desc.dtype()
Y
Yu Yang 已提交
1799 1800 1801

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

1815
            import paddle
J
Jiabin Yang 已提交
1816
            import paddle.fluid as fluid
1817 1818

            paddle.enable_static()
J
Jiabin Yang 已提交
1819 1820 1821 1822 1823 1824 1825
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1826 1827
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1828 1829
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1830
        return self.desc.lod_level()
Y
Yu Yang 已提交
1831

Y
Yu Yang 已提交
1832 1833
    @property
    def type(self):
J
Jiabin Yang 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1850
        return self.desc.type()
Y
Yu Yang 已提交
1851

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1935
    def _set_error_clip(self, error_clip):
1936 1937 1938 1939 1940 1941 1942 1943 1944
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1945 1946
        self.error_clip = error_clip

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1987
            raise ValueError("slice step can not be zero")
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2063
    def _cloneVar(self, copy=False):
2064 2065
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2066 2067
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2068 2069 2070 2071
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2072
        new_var = self._cloneVar()
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2083
        new_var = self._cloneVar()
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2094
                return self._cloneVar(True)
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2113
                return self._cloneVar(True)
2114
            index = int(item)
2115
            if (index > 0 and index >= self.shape[axis]) \
2116 2117 2118 2119 2120 2121 2122
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2123
        return _getitem_impl_(self, item)
2124

2125
    def __setitem__(self, item, value):
2126
        return _setitem_impl_(self, item, value)
2127

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2274 2275 2276 2277
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2278 2279 2280 2281
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2282 2283 2284 2285 2286 2287 2288
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2398

F
fengjiayi 已提交
2399 2400 2401
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2402

2403 2404
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2405 2406 2407 2408
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2409
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2410 2411 2412 2413 2414
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2415 2416 2417 2418
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2428
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2429 2430 2431 2432 2433 2434
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2435 2436 2437 2438 2439 2440 2441 2442
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2443 2444
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2445 2446
        return self.op_proto_map[type]

2447 2448
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2449
        custom_op_names = []
2450 2451 2452
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2453 2454 2455
                custom_op_names.append(proto.type)

        return custom_op_names
2456

2457 2458 2459 2460
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2461
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2462
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2463 2464
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2465 2466
        }

F
fengjiayi 已提交
2467

X
Xin Pan 已提交
2468
class Operator(object):
2469
    """
2470 2471 2472 2473 2474 2475 2476
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2477
        type(str): The type of operator. Default None.
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2498
        Block.append_op or Block._prepend_op instead.
2499 2500 2501 2502

    Examples:
        .. code-block:: python

2503
            import paddle.fluid as fluid
2504
            cur_program = fluid.Program()
2505 2506 2507 2508 2509
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2510
    """
2511
    OP_WITHOUT_KERNEL_SET = {
2512 2513
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2514
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2515 2516
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2517
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2518
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
2519
        'copy_cross_scope', 'c_gen_cncl_id'
2520
    }
2521

Y
Yu Yang 已提交
2522 2523
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2524
                 desc,
Y
Yu Yang 已提交
2525 2526 2527
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2528
                 attrs=None):
J
Jiabin Yang 已提交
2529
        if _non_static_mode():
2530 2531
            if type is None:
                raise ValueError(
2532
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2533
            self._type = type
M
minqiyang 已提交
2534
            self.attrs = attrs if attrs else {}
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2549
                )] = self.block.program._op_role
2550 2551 2552

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2553 2554
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2555 2556 2557 2558 2559

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2560 2561 2562 2563 2564
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2565 2566 2567
                return
            if type is None:
                raise ValueError(
2568
                    "`type` to initialized an Operator can not be None.")
2569 2570
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2571 2572 2573 2574 2575 2576 2577
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2578 2579 2580 2581 2582 2583 2584

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
2596
                    if (type == 'less_than' and op_attrs['force_cpu'] != None
2597 2598 2599 2600 2601
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2602 2603 2604 2605 2606
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2607

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2621
                        if not isinstance(in_args, (list, tuple)):
2622 2623 2624 2625 2626 2627
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2628
                        for index, arg in enumerate(in_args):
2629 2630 2631 2632
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2633
                            elif isinstance(arg, (Variable, core.VarBase)):
2634
                                in_arg_names.append(cpt.to_text(arg.name))
2635
                            else:
2636 2637 2638 2639
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2640 2641
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2666 2667 2668 2669
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2670
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2671
                        if not _non_static_mode():
2672 2673 2674 2675
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

J
jianghaicheng 已提交
2689 2690 2691 2692 2693 2694 2695 2696 2697
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
                if global_ipu_index is not None:
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
                if global_ipu_stage is not None:
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2698 2699 2700 2701 2702
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2703
    def _has_kernel(self, op_type):
2704 2705
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2706
    def to_string(self, throw_on_error):
2707
        """
2708 2709
        Get debug string.

2710
        Args:
2711 2712
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2713

2714 2715
        Returns:
            str: The debug string.
2716 2717

        """
2718
        protostr = self.desc.serialize_to_string()
2719
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2720 2721
        return _debug_string_(proto, throw_on_error)

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2754
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2807
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2808
        dist_context = get_default_distributed_context()
2809 2810
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2811
            attrs_str += ", {name} = {value}".format(
2812
                name="dist_attr", value=dist_op)
2813

2814 2815
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2816 2817
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2818 2819 2820 2821 2822
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2823
    def __str__(self):
2824
        return self._to_readable_code()
2825 2826 2827

    __repr__ = __str__

F
fengjiayi 已提交
2828 2829
    @property
    def type(self):
2830
        return self.desc.type()
F
fengjiayi 已提交
2831 2832

    def input(self, name):
2833
        r"""
2834
        Get the input arguments according to the input parameter name.
2835

2836 2837
        Args:
            name(str): The input parameter name.
2838

2839 2840 2841
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2842
        """
F
fengjiayi 已提交
2843 2844
        return self.desc.input(name)

W
Wu Yi 已提交
2845
    def _rename_input(self, old_name, new_name):
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2856
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2857

W
Wu Yi 已提交
2858
    def _rename_output(self, old_name, new_name):
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2869
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2870

F
fengjiayi 已提交
2871 2872 2873 2874
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2875 2876 2877 2878 2879 2880 2881 2882
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2883
    def output(self, name):
2884
        r"""
2885
        Get output arguments by the output parameter name.
2886

2887 2888
        Args:
            name(str): The output parameter name.
2889

2890 2891 2892
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2893
        """
F
fengjiayi 已提交
2894 2895 2896 2897 2898 2899
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2900 2901 2902 2903 2904 2905 2906 2907
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2908
    def has_attr(self, name):
2909
        """
2910 2911
        Whether this Operator has the attribute with name or not.

2912
        Args:
2913
            name(str): the attribute name.
2914

2915 2916
        Returns:
            bool: True if has this attribute.
2917 2918

        """
F
fengjiayi 已提交
2919 2920 2921
        return self.desc.has_attr(name)

    def attr_type(self, name):
2922
        """
2923
        Get the type of attribute by attribute's name.
2924

2925 2926
        Args:
            name(str): the attribute name.
2927

2928 2929
        Returns:
            core.AttrType: the attribute type.
2930
        """
F
fengjiayi 已提交
2931 2932
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2933
    def _set_attr(self, name, val):
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2944 2945
        self._update_desc_attr(name, val)

2946 2947 2948
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2960 2961
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2962 2963
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2964
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2965 2966 2967 2968
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2969
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2970

F
fengjiayi 已提交
2971 2972 2973 2974 2975
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2976
        """
2977 2978
        Get the attribute by name.

2979
        Args:
2980
            name(str): the attribute name.
2981

2982 2983
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2984 2985
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2986
        return self.desc.attr(name)
Y
Yu Yang 已提交
2987

W
Wu Yi 已提交
2988
    def _block_attr_id(self, name):
2989
        """
G
gongweibao 已提交
2990
        Get the block attribute's id by name.
2991

2992 2993
        Args:
            name(str): the attribute name.
2994

2995 2996
        Returns:
            int: the block index.
2997
        """
W
Wu Yi 已提交
2998
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2999

W
Wu Yi 已提交
3000
    def _block_attr(self, name):
G
gongweibao 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3011
        id = self._block_attr_id(name)
G
gongweibao 已提交
3012 3013 3014
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3015
    def _blocks_attr(self, name):
G
gongweibao 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3026
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
3027 3028 3029 3030 3031
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3032
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3043
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3044

J
JiayiFeng 已提交
3045
    def all_attrs(self):
F
fengjiayi 已提交
3046
        """
3047 3048 3049
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3050
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3051 3052 3053 3054
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
3055 3056
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3057
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
3058 3059 3060
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3061
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
3062 3063 3064 3065
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
3066 3067
        return attr_map

3068 3069 3070
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3071 3072 3073 3074

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3075 3076 3077
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3078 3079 3080 3081 3082 3083 3084 3085

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3086 3087
            return False

3088 3089 3090 3091 3092 3093
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
3119

Y
Yu Yang 已提交
3120
class Block(object):
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3135
        use `Program._create_block()` to create a block.
3136 3137 3138 3139

    Examples:
        .. code-block:: python

3140 3141 3142
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3143 3144 3145 3146 3147 3148 3149 3150 3151
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3152
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3153
        self.desc = program.desc.block(idx)
3154
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3155
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3156
        self.program = program
3157
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3158

3159
    def __str__(self):
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3194
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3206

F
fengjiayi 已提交
3207 3208
    def to_string(self, throw_on_error, with_details=False):
        """
3209 3210
        Get debug string.

F
fengjiayi 已提交
3211 3212
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3213
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3214
            with_details(bool): more details about variables and parameters
3215 3216
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3217

3218 3219
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3220 3221 3222 3223
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
3224
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3225 3226
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3227
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3228
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3229
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3230
            for op in self.ops:
F
fengjiayi 已提交
3231 3232
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3233 3234 3235
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3236 3237
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3238 3239
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3240 3241 3242

    __repr__ = __str__

Y
Yu Yang 已提交
3243 3244
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3245
        return self.desc.parent
Y
Yu Yang 已提交
3246

Y
Yu Yang 已提交
3247 3248 3249 3250
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3251
    def _set_forward_block_idx(self, idx):
3252 3253 3254 3255 3256 3257 3258 3259 3260
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3261
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3262

3263 3264 3265 3266 3267 3268 3269 3270
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3271 3272
    @property
    def idx(self):
Y
Yu Yang 已提交
3273
        return self.desc.id
Y
Yu Yang 已提交
3274

Q
Qiao Longfei 已提交
3275
    def var(self, name):
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3289
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3290 3291 3292
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3293 3294
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3295
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3296
        return v
Q
Qiao Longfei 已提交
3297

X
Xin Pan 已提交
3298
    def _find_var_recursive(self, name):
3299 3300 3301 3302 3303 3304 3305
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3306
            Variable: the Variable with the giving name. Or None if not found.
3307
        """
Y
Yu Yang 已提交
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3332
        return None
Y
Yu Yang 已提交
3333

X
Xin Pan 已提交
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3353

Q
Qiao Longfei 已提交
3354
    def all_parameters(self):
3355
        return list(self.iter_parameters())
3356

3357
    def iter_parameters(self):
M
minqiyang 已提交
3358
        return (item[1] for item in six.iteritems(self.vars)
3359
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3360

Y
Yu Yang 已提交
3361
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3362
        if _non_static_mode():
L
Leo Chen 已提交
3363 3364
            var = _varbase_creator(*args, **kwargs)
        else:
3365 3366 3367
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3368
        return var
Y
Yu Yang 已提交
3369

Q
Qiao Longfei 已提交
3370 3371 3372
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3373
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3374 3375
        """
        Rename variable in vars and ops' inputs and outputs
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3388
        """
M
minqiyang 已提交
3389 3390
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3391

T
typhoonzero 已提交
3392
        if not self.has_var(name):
3393
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3394 3395
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3396
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3397 3398 3399 3400 3401 3402
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3403
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3404 3405 3406 3407
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3408
        orig_var_type = v.type
M
minqiyang 已提交
3409
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3410
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3411
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3412
        if var_type == "Parameter":
L
Leo Chen 已提交
3413
            if in_dygraph_mode():
J
Jiabin Yang 已提交
3414
                var = EagerParamBase(
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
J
Jiabin Yang 已提交
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
                if _in_legacy_dygraph():
                    var = ParamBase(
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip)
                else:
                    var = Parameter(
                        self,
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip)
T
typhoonzero 已提交
3448
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3449 3450
            var = Variable(
                self,
T
typhoonzero 已提交
3451
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3452 3453 3454 3455
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3456
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3457 3458 3459
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3460
        self._sync_with_cpp()
3461
        return var
T
typhoonzero 已提交
3462

3463 3464 3465
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3466
        self.desc._remove_var(cpt.to_bytes(name))
3467 3468
        del self.vars[name]

Y
Yu Yang 已提交
3469 3470
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3471
        param = None
L
Leo Chen 已提交
3472
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3473
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3474
        else:
J
Jiabin Yang 已提交
3475 3476 3477 3478
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3479

3480
        if 'initializer' in kwargs:
3481 3482 3483 3484 3485

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3486
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3487
                        # are treated as initialization ops that cause error.
3488
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3489 3490 3491 3492 3493
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3494
                            continue
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3506
                # TODO already inited, do nothing, should log a warning
3507 3508 3509
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3510
        return param
Y
Yu Yang 已提交
3511

Y
Yu Yang 已提交
3512
    def append_op(self, *args, **kwargs):
3513 3514 3515 3516 3517 3518
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3519
        if _non_static_mode():
3520
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3521
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3522
            type = kwargs.get("type", None)
3523 3524 3525
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3526
                type=type,
M
minqiyang 已提交
3527 3528
                inputs=None,
                outputs=None,
3529
                attrs=attrs)
3530

M
minqiyang 已提交
3531 3532 3533
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3534
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3535 3536

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3537
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3538 3539
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
Z
zyfncg 已提交
3540 3541
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3542
        else:
3543 3544
            from paddle.fluid.dygraph.base import param_guard

3545
            op_desc = self.desc.append_op()
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3559

M
minqiyang 已提交
3560
            self.ops.append(op)
M
minqiyang 已提交
3561

3562 3563
        return op

W
Wu Yi 已提交
3564
    def _insert_op(self, index, *args, **kwargs):
3565 3566 3567 3568 3569 3570 3571 3572 3573
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3574
        self._sync_with_cpp()
F
fangshuixun007 已提交
3575
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3576

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3594 3595 3596 3597 3598 3599 3600 3601 3602
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3603 3604
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3605
        self.desc._remove_op(index, index + 1)
3606 3607
        del self.ops[index]

W
Wu Yi 已提交
3608
    def _slice_ops(self, start, end):
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3619
        return self.ops[start:end]
Y
Yancey1989 已提交
3620

W
Wu Yi 已提交
3621
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
3622
        if _non_static_mode():
J
Jiabin Yang 已提交
3623 3624
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3625
            op = Operator(
J
Jiabin Yang 已提交
3626
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3627

J
Jiabin Yang 已提交
3628
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3629
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3630 3631
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3632
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3633
        else:
3634 3635 3636 3637 3638 3639 3640 3641
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3642
            self.ops.insert(0, op)
3643

Y
Yu Yang 已提交
3644 3645
        return op

W
Wu Yi 已提交
3646
    def _sync_with_cpp(self):
3647
        """
3648 3649
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3650
        """
Q
Qiao Longfei 已提交
3651 3652 3653
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3671

3672
        # sync variables removed from c++ end
3673
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3674
            if not self.desc.find_var(cpt.to_bytes(var)):
3675 3676
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3677
        # sync operators from cpp
3678 3679 3680 3681
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3698 3699 3700 3701 3702

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3703
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3704 3705 3706 3707 3708 3709 3710

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3724 3725 3726 3727
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3728
    def _copy_param_info_from(self, other):
3729
        """
3730 3731
        Copy the information of parameters from the other block.

3732
        Args:
3733 3734 3735 3736 3737
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3738 3739 3740 3741 3742

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3743 3744
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3745
        for p in other.iter_parameters():
3746 3747 3748
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3749 3750
                # if the Parameter is pruned, v may be None
                continue
3751
            assert isinstance(v, Variable)
3752
            new_p = None
L
Leo Chen 已提交
3753
            if in_dygraph_mode():
J
Jiabin Yang 已提交
3754
                new_p = EagerParamBase(
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
J
Jiabin Yang 已提交
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
                if _in_legacy_dygraph():
                    new_p = ParamBase(
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
                        if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
3792 3793
            self.vars[new_p.name] = new_p

3794
    def _clone_variable(self, var, force_persistable=True):
3795 3796
        """
        Clone a variable into current block.
3797

3798 3799
        Args:
            var: the variable to be cloned.
3800 3801 3802
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3803 3804

        Returns:
3805
            Variable: the new  variable cloned from 'var' in current block.
3806 3807
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3808 3809 3810 3811 3812
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3813 3814
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3815
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3816 3817 3818 3819 3820 3821
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3822
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3823 3824
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3825 3826 3827 3828 3829 3830 3831
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3832
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3833 3834
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3835
        return ret_var
3836

Y
Yu Yang 已提交
3837

3838 3839 3840 3841 3842 3843
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3955
    def remove_input_by_id(self, node_id):
3956 3957 3958 3959 3960 3961
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3962
        self.node.remove_input(node_id)
3963

3964
    def remove_input(self, node):
3965 3966 3967 3968
        """
        Remove a node from inputs.

        Args:
3969
            node(IrNode): the node being removed.
3970
        """
3971
        self.node.remove_input(node.node)
3972

3973
    def append_input(self, node):
3974 3975 3976 3977
        """
        Append a node in inputs.

        Args:
3978
            node(IrNode): the node being appended.
3979
        """
3980
        self.node.append_input(node.node)
3981 3982 3983 3984 3985 3986 3987 3988

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3989
    def remove_output_by_id(self, node_id):
3990 3991 3992 3993 3994 3995
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3996
        self.node.remove_output(node_id)
3997

3998
    def remove_output(self, node):
3999 4000 4001 4002
        """
        Remove a node from outputs.

        Args:
4003
            node(IrNode): the node being removed.
4004
        """
4005
        self.node.remove_output(node.node)
4006

4007
    def append_output(self, node):
4008 4009 4010 4011
        """
        Append a node in outputs.

        Args:
4012
            node(IrNode): the node being appended.
4013
        """
4014
        self.node.append_output(node.node)
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4062
            "The node variable description can not be None."
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4073
            "The node variable description can not be None."
4074 4075
        return self.node.var().persistable()

4076 4077 4078 4079 4080 4081 4082 4083
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4084
            "The node variable description can not be None."
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4095
            "The node variable description can not be None."
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4106
            "The node variable description can not be None."
4107 4108
        return self.node.var().shape()

4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4156
            "The node operator description can not be None."
4157 4158
        self.node.op()._rename_input(old_input_name, new_input_name)

4159 4160 4161 4162 4163 4164 4165 4166 4167
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4168
            "The node operator description can not be None."
4169 4170
        self.node.op()._rename_output(old_output_name, new_output_name)

4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4182
            "The node operator description can not be None."
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4196
            "The node operator description can not be None."
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4207
            "The node operator description can not be None."
4208 4209
        return self.node.op().set_type(new_type)

4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4225
            "The node operator description can not be None."
4226 4227 4228 4229
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
4230
                all(isinstance(v, Block) for v in val):
4231 4232
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4233
                isinstance(val, core.ProgramDesc):
4234 4235 4236 4237
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4238 4239 4240 4241 4242 4243 4244 4245
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4246
            "The node operator description can not be None."
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4257
            "The node operator description can not be None."
4258 4259
        return self.node.op().output_arg_names()

4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4281 4282
class IrGraph(object):
    """
4283
    Python IrGraph. Beneath it is a core.Graph, which is used for
4284
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4285 4286
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4287 4288 4289 4290
    """

    def __init__(self, graph, for_test=False):
        """
4291 4292
        Construct an IrGraph using core.Graph.

4293 4294 4295 4296 4297 4298 4299 4300 4301
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4302 4303 4304 4305
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4306 4307 4308
        Warns:
            The method only clones the graph structure, not its attributes.

4309 4310 4311
        Returns:
            IrGraph: A new and duplicated graph.
        """
4312
        g = self.graph.clone()
4313 4314
        return IrGraph(g, self._for_test)

4315
    def is_test(self):
4316 4317 4318
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4319 4320
        return self._for_test

W
WangZhen 已提交
4321
    def all_nodes(self):
4322 4323 4324
        """
        Return all nodes included in the graph as a set.
        """
4325
        return {IrNode(node) for node in self.graph.nodes()}
4326

4327
    def all_var_nodes(self):
4328 4329 4330
        """
        Return all variable nodes included in the graph as a set.
        """
4331
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4332

4333
    def all_persistable_nodes(self):
4334 4335 4336
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4337 4338 4339 4340 4341
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4342
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4343

4344
    def all_op_nodes(self):
4345 4346 4347
        """
        Return all operator nodes included in the graph as a set.
        """
4348
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4349

4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4367
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4379
            IrVarNode: the created persistable variable node.
4380
        """
4381 4382 4383 4384 4385
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4386
        return IrVarNode(self.graph.create_var_node(var_desc))
4387 4388

    def create_var_node(self, name, var_type, shape, var_dtype):
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4400
            IrVarNode: the created variable node.
4401 4402
        """

4403 4404 4405 4406
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4407
        return IrVarNode(self.graph.create_var_node(var_desc))
4408

4409 4410 4411 4412 4413 4414
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4415
    def create_var_node_from_desc(self, var_desc):
4416 4417 4418 4419 4420 4421 4422 4423
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4424
            IrVarNode: the created variable node.
4425
        """
4426
        return IrVarNode(self.graph.create_var_node(var_desc))
4427 4428

    def create_op_node(self, op_type, attrs, inputs, outputs):
4429 4430 4431 4432 4433 4434 4435
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4436
            outputs(dict): the outputs of the operator node.
4437 4438

        Returns:
4439
            IrOpNode: the created operator node.
4440
        """
4441 4442
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4443
        for attr, value in six.iteritems(attrs):
4444
            self._update_desc_attr(op_desc, attr, value)
4445
        for input_name, var_nodes in six.iteritems(inputs):
4446 4447 4448 4449
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4450
        for output_name, var_nodes in six.iteritems(outputs):
4451 4452 4453 4454
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4455
        return IrOpNode(self.graph.create_op_node(op_desc))
4456 4457

    def create_op_node_from_desc(self, op_desc):
4458 4459 4460 4461 4462 4463 4464
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4465
            IrOpNode: the created operator node.
4466
        """
4467
        return IrOpNode(self.graph.create_op_node(op_desc))
4468 4469

    def update_input_link(self, old_input_node, new_input_node, op_node):
4470 4471 4472 4473
        """
        Update the input's link of a operator node.

        Args:
4474 4475 4476
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4477
        """
4478
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4479
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4480
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4481 4482 4483 4484
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4485
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4486

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4497
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4498
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4499 4500 4501 4502 4503 4504
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4505
    def link_to(self, node_in, node_out):
4506 4507 4508 4509
        """
        Connect two nodes.

        Args:
4510 4511
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4512
        """
4513 4514 4515 4516
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4517 4518
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4519 4520

    def safe_remove_nodes(self, remove_nodes):
4521 4522 4523 4524 4525 4526 4527
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4528
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4529 4530 4531 4532
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4533 4534
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4535

Z
Zhen Wang 已提交
4536 4537 4538 4539 4540 4541 4542 4543
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4544
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4545 4546 4547 4548
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4549
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4550 4551 4552
                        ]
                    else:
                        var_nodes[each_var_name].append(
4553 4554
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4555 4556
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4557
    def has_circle(self):
4558 4559 4560 4561 4562 4563
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4564 4565 4566
        return core.has_circle(self.graph)

    def graph_num(self):
4567 4568 4569 4570 4571 4572
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4573 4574 4575
        return core.graph_num(self.graph)

    def topology_sort(self):
4576 4577 4578
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4579
        Notes: the `graph` can not contain a circle.
4580 4581

        Returns:
Z
Zhen Wang 已提交
4582
            list(IrNode): nodes in topology order.
4583
        """
4584
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4585
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4586 4587

    def build_adjacency_list(self):
4588 4589 4590 4591
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4592
            dict{IrNode: set(IrNode)}: the adjacency list.
4593
        """
4594 4595 4596 4597 4598
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4599

4600 4601 4602 4603 4604 4605 4606 4607
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4608
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4609 4610 4611 4612 4613
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4614 4615
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4616 4617 4618
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4619 4620 4621 4622 4623
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4624
        remove_ctr_vars = set()
4625
        if remove_ctr_var:
4626
            for node in self.all_var_nodes():
4627 4628 4629
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4630 4631
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4632 4633
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4634 4635 4636 4637 4638 4639
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4640 4641 4642 4643
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4644 4645
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4646 4647 4648 4649 4650 4651 4652
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4653 4654 4655
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4656
        WARN: When the graph includes backward operator nodes, the
4657 4658 4659 4660 4661 4662
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4663
        convert_pass = core.get_pass('graph_to_program_pass')
4664 4665
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4666 4667 4668 4669
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4670 4671 4672 4673 4674 4675 4676 4677
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4678 4679
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4680 4681
        return target_node

4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4698
class Program(object):
D
dzhwinter 已提交
4699
    """
4700
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4701
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4702
    it will contain nested block.
4703

J
Jiabin Yang 已提交
4704 4705 4706
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4707

J
Jiabin Yang 已提交
4708
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4709
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4710 4711 4712 4713 4714 4715 4716
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4717
    **Notes**:
4718 4719 4720
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4721 4722

    Returns:
J
Jiabin Yang 已提交
4723
        Program: An empty Program.
D
dzhwinter 已提交
4724 4725

    Examples:
4726 4727
        .. code-block:: python

4728 4729 4730 4731
            import paddle
            import paddle.static as static

            paddle.enable_static()
4732

4733 4734 4735 4736 4737
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4738
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4739 4740 4741

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4742 4743 4744

    """

4745 4746
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4747 4748
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4749 4750
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4751
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4752
        self.__op_role_var = []
T
tangwei12 已提交
4753

4754 4755
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4756
        self._is_distributed = False
4757
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4758
        self._is_chief = False
4759 4760 4761
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4762
        self._endpoints = []
4763 4764 4765
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4766
        self._trainers_endpoints = []
4767
        # the distributed lookup table names
T
tangwei12 已提交
4768
        self._distributed_lookup_table = None
4769 4770 4771

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4772 4773
        self._use_lamb = False

4774 4775 4776
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4777

4778 4779 4780
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4781
        self._program_config = None
4782

H
hutuxian 已提交
4783 4784 4785
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4786 4787 4788
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4789 4790 4791
        # appending gradients times
        self._appending_grad_times = 0

4792 4793 4794 4795
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4796 4797
        # compiled program, i.e. Graph
        self._graph = None
4798 4799
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4800

4801
    def _find_var_class_kwargs(self, new_desc):
4802 4803 4804 4805 4806 4807 4808 4809
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4879
        assert block_num == self.desc.num_blocks()
4880 4881

        # clear old blocks and desc
4882 4883 4884 4885 4886 4887 4888 4889 4890
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4891

4892
        del desc
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4922 4923
                import paddle
                import paddle.static as static
4924

4925 4926 4927
                paddle.enable_static()

                prog = static.default_main_program()
4928 4929 4930 4931 4932
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4933
                prog1 = static.default_main_program()
4934 4935 4936 4937 4938 4939 4940 4941
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4942
    @property
4943
    def _op_role(self):
Y
yuyang18 已提交
4944 4945 4946 4947 4948 4949 4950 4951
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4952
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4953 4954 4955 4956
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4957 4958
        return self._current_role

4959 4960
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4961 4962 4963
        self._current_role = role

    @property
4964
    def _op_role_var(self):
Y
yuyang18 已提交
4965
        """
4966
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4967

4968
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4969 4970 4971

        Notes: This is a very low-level API. Users should not use it directly.
        """
4972
        return self.__op_role_var
Y
yuyang18 已提交
4973

4974
    @signature_safe_contextmanager
4975 4976 4977 4978 4979
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4980 4981 4982 4983
        try:
            yield
        finally:
            self._current_role = tmp_role
4984

S
rename  
sneaxiy 已提交
4985
    @signature_safe_contextmanager
W
Wu Yi 已提交
4986
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4987 4988 4989 4990 4991 4992 4993
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4994
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4995 4996 4997

        Examples:

4998
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4999
            >>> p, g = backward(...)
W
Wu Yi 已提交
5000
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5001 5002
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5003
        tmp_role = self._current_role
5004
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5005

Y
yuyang18 已提交
5006 5007
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5008
        self.__op_role_var = [
5009 5010 5011
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5012 5013 5014 5015 5016
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5017

S
rename  
sneaxiy 已提交
5018
    @signature_safe_contextmanager
X
Xin Pan 已提交
5019
    def _lr_schedule_guard(self, is_with_opt=False):
5020 5021 5022 5023 5024 5025 5026
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5027 5028 5029 5030
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5031 5032 5033

        Examples:

5034
            >>> import paddle.fluid as fluid
5035 5036 5037 5038
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5039 5040

        tmp_role = self._current_role
5041
        tmp_var = self.__op_role_var
5042

5043 5044
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5045 5046
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5047
        # TODO(typhoonzero): how to set target learning rate var
5048
        self.__op_role_var = []
5049 5050 5051 5052 5053
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5054

5055
    def __str__(self):
Y
yuyang18 已提交
5056 5057 5058 5059 5060 5061 5062 5063 5064
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5085 5086
            import paddle
            import paddle.static as static
5087

5088 5089 5090
            paddle.enable_static()

            cur_program = static.Program()
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5102
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5103 5104 5105 5106
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5107
            program_str += '\n'
5108
        return program_str
Y
Yang Yang(Tony) 已提交
5109

F
fengjiayi 已提交
5110 5111 5112
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5113

J
Jiabin Yang 已提交
5114 5115 5116
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5117

J
Jiabin Yang 已提交
5118
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5119

H
haowang101779990 已提交
5120
        Returns:
J
Jiabin Yang 已提交
5121
            str: The debug string describe current Program.
Y
yuyang18 已提交
5122 5123

        Raises:
J
Jiabin Yang 已提交
5124
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5125

5126 5127 5128
        Examples:
            .. code-block:: python

5129 5130 5131 5132
                import paddle
                import paddle.static as static

                paddle.enable_static()
5133

5134 5135 5136
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5137
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5138
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5139
                print("program string without detail: {}".format(prog_string))
5140
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5141
        """
5142 5143 5144 5145 5146 5147 5148 5149 5150
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5151 5152 5153 5154 5155 5156
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5157 5158
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5159 5160
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5161

W
Wu Yi 已提交
5162
    def _get_desc(self):
Y
yuyang18 已提交
5163 5164 5165 5166 5167 5168 5169
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5170 5171
        return self.desc

X
version  
Xin Pan 已提交
5172 5173 5174
    def _version(self):
        return self.desc._version()

5175
    def clone(self, for_test=False):
Y
yuyang18 已提交
5176
        """
5177 5178 5179 5180
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5181

5182
        Create a new Program with forward content of original one when ``for_test=True``.
5183
        Create a new Program as same as the original one when ``for_test=False``.
5184

5185
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5186 5187 5188
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5189

5190 5191
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5192 5193
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5194
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5195

J
Jiabin Yang 已提交
5196
        For Example:
5197
          ::
L
Luo Tao 已提交
5198

5199 5200 5201 5202 5203 5204
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5205
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5206
            loss = paddle.mean(pred)
5207
            # Here we use clone before Momentum
5208 5209
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5210
            optimizer.minimize(loss)
5211

J
Jiabin Yang 已提交
5212
        Args:
5213

5214 5215
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5216

J
Jiabin Yang 已提交
5217
        Returns:
5218
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5219

Y
yuyang18 已提交
5220 5221 5222

        Examples:

5223 5224 5225 5226 5227 5228 5229
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5246
            1. To clone a test program, the sample code is:
5247 5248 5249
                .. code-block:: python

                    import six
5250 5251 5252 5253 5254 5255
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5268 5269
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5270 5271 5272

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5273 5274 5275
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5276
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5277 5278
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5279
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5280 5281
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5282
                            test_program = train_program.clone(for_test=True)
5283
                    print_prog(test_program)
J
Jiabin Yang 已提交
5284 5285 5286 5287

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5288
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5289 5290 5291 5292
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5293 5294 5295
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5296 5297 5298
                            sgd.minimize(avg_loss)


5299
            2. The clone method can be avoid if you create program for training and program for testing individually.
5300 5301 5302
                .. code-block:: python

                    import six
5303 5304 5305 5306 5307 5308
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5320

5321
                    def network():
5322
                        img = static.data(name='image', shape=[None, 784])
5323
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5324 5325
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5326
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5327 5328
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5329 5330
                        return avg_loss

5331 5332 5333 5334 5335
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5336
                            avg_loss = network()
5337
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5338
                            sgd.minimize(avg_loss)
5339
                    # the test startup program is not used.
5340 5341
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5342 5343
                            avg_loss = network()
                    print_prog(test_program_2)
5344

5345
            The two code snippets above will generate and print same programs.
5346
        """
5347

T
tangwei12 已提交
5348
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5349 5350 5351
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5352
        pruned_origin_block_id_map = None
5353
        if for_test:
5354 5355 5356 5357 5358 5359 5360 5361 5362
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5363
        else:
5364
            p = Program()
G
gongweibao 已提交
5365 5366
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5367
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5368 5369 5370
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5371 5372

            p._current_role = self._current_role
5373
            p.__op_role_var = self.__op_role_var
5374
            p._appending_grad_times = self._appending_grad_times
5375 5376
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5377

T
tangwei12 已提交
5378
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5379
            # its desc.
W
Wu Yi 已提交
5380
            p._sync_with_cpp()
5381

W
Wu Yi 已提交
5382
        p._copy_param_info_from(self)
5383
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5384
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5385
        return p
5386

5387
    def _prune(self, targets):
Y
yuyang18 已提交
5388 5389 5390 5391 5392 5393 5394 5395
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5396
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5397 5398 5399 5400
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5401
        """
5402
        return self._prune_with_input([], targets)
5403 5404

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5405
        """
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5416
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5417 5418 5419 5420 5421 5422
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5423
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5424 5425 5426
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5427 5428
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5429 5430
        if not isinstance(targets, list):
            targets = [targets]
5431 5432 5433

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5434 5435 5436
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5437

5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5454 5455 5456 5457
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5458 5459 5460
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5461
                else:
5462 5463 5464
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5465 5466 5467 5468 5469 5470

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5471 5472 5473
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5474

5475 5476 5477 5478 5479 5480 5481 5482 5483
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5484
                        # Skip optimize op except for optimize op in targets,
5485 5486 5487 5488 5489
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5490

5491
                if target_op is not None:
5492 5493 5494
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5495

5496
        res = Program()
5497 5498 5499
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5500 5501 5502
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5503
        res._sync_with_cpp()
5504 5505 5506 5507 5508

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5509 5510
        return res

X
Xin Pan 已提交
5511
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5512
        """
F
fengjiayi 已提交
5513 5514 5515 5516 5517
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5518
        3. change the :code:`is_test`
Y
yuyang18 已提交
5519 5520 5521
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5522
        Args:
X
Xin Pan 已提交
5523 5524
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5525

Y
yuyang18 已提交
5526 5527 5528 5529 5530 5531
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5532
        res = Program()
5533
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5534 5535 5536 5537

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5538
        if prune_read_op:
5539 5540 5541 5542 5543 5544 5545 5546 5547
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5548
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5549 5550

        # change all `is_test` attributes to True
M
minqiyang 已提交
5551
        for i in six.moves.range(res.desc.num_blocks()):
5552
            block = res.desc.block(i)
M
minqiyang 已提交
5553
            for j in six.moves.range(block.op_size()):
5554 5555
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5556
                    op._set_attr('is_test', True)
5557 5558 5559
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5560 5561 5562
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5563
        res._sync_with_cpp()
5564 5565
        return res

5566
    def _remove_training_info(self, clip_extra=True):
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5656 5657
        return res

5658 5659
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5660
        """
5661 5662 5663
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5664

5665 5666
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5667

J
Jiabin Yang 已提交
5668
        Args:
Y
yuyang18 已提交
5669

J
Jiabin Yang 已提交
5670
            binary_str_type (str): the binary prootbuf string.
5671

J
Jiabin Yang 已提交
5672 5673
        Returns:
            Program: A deserialized Program.
5674 5675 5676 5677

        Examples:
            .. code-block:: python

5678 5679 5680 5681
                import paddle
                import paddle.static as static

                paddle.enable_static()
5682

5683 5684 5685 5686
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5687

5688
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5689

5690
                    z = paddle.matmul(x=x, y=y)
5691

5692 5693
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5694

5695
                    print(static.default_main_program())
5696
                    print(prog_restored)
Y
yuyang18 已提交
5697
        """
5698 5699
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5700
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5701
        p._sync_with_cpp()
5702
        return p
Y
Yu Yang 已提交
5703

5704
    @staticmethod
5705
    def _construct_from_desc(desc):
5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5721 5722
    @property
    def random_seed(self):
Y
yuyang18 已提交
5723
        """
J
Jiabin Yang 已提交
5724
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5725 5726
        the random seed from random device.

5727 5728
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5729 5730 5731

        Returns:
            int64: Random seed in current Program
5732

5733 5734 5735 5736

        Examples:
            .. code-block:: python

5737 5738 5739
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5740

5741 5742 5743
                paddle.enable_static()

                prog = static.default_main_program()
5744
                random_seed = prog.random_seed
5745
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5746 5747 5748
                print(random_seed)
                ## 0
                ## the default random seed is 0
5749

5750
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5751
                prog.random_seed = 1
5752
                z_var = F.dropout(x_var, 0.7)
5753

5754
                print(prog.random_seed)
5755 5756
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5757
        """
D
dzhwinter 已提交
5758 5759
        return self._seed

Q
qiaolongfei 已提交
5760 5761
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5762
        """
5763 5764
        The number of :ref:`api_guide_Block_en`  in this Program.

5765 5766
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5767 5768 5769

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5770

5771 5772 5773 5774

        Examples:
            .. code-block:: python

5775 5776 5777 5778
                import paddle
                import paddle.static as static

                paddle.enable_static()
5779

5780
                prog = static.default_main_program()
5781 5782
                num_blocks = prog.num_blocks
                print(num_blocks)
5783

5784 5785
                # print result:
                # 1
Y
yuyang18 已提交
5786
        """
Q
qiaolongfei 已提交
5787 5788
        return self.desc.num_blocks()

D
dzhwinter 已提交
5789 5790 5791
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5792 5793 5794
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5795 5796
        self._seed = seed

Y
Yu Yang 已提交
5797
    def __repr__(self):
5798
        return self.__str__()
5799

Y
Yu Yang 已提交
5800
    def global_block(self):
Y
yuyang18 已提交
5801
        """
5802 5803
        .. note::
            This API has no effect in Dygraph mode.
5804 5805 5806

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5807 5808
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5809

5810 5811 5812 5813

        Examples:
            .. code-block:: python

5814 5815 5816 5817
                import paddle
                import paddle.static as static

                paddle.enable_static()
5818

5819
                prog = static.default_main_program()
5820 5821
                gb_block = prog.global_block()
                print(gb_block)
5822

Y
yuyang18 已提交
5823
        """
Y
Yu Yang 已提交
5824 5825
        return self.blocks[0]

Q
Qiao Longfei 已提交
5826
    def block(self, index):
Y
yuyang18 已提交
5827
        """
5828 5829
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5830

5831 5832
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5833 5834
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5835

J
Jiabin Yang 已提交
5836 5837
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5838 5839 5840 5841

        Examples:
            .. code-block:: python

5842 5843 5844 5845
                import paddle
                import paddle.static as static

                paddle.enable_static()
5846

5847
                prog = static.default_main_program()
5848 5849
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5850
        """
Q
Qiao Longfei 已提交
5851 5852
        return self.blocks[index]

Y
Yu Yang 已提交
5853
    def current_block(self):
Y
yuyang18 已提交
5854
        """
5855 5856
        .. note::
            This API has no effect in Dygraph mode.
5857

J
Jiabin Yang 已提交
5858 5859
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5860

J
Jiabin Yang 已提交
5861 5862
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5863

5864 5865 5866
        Examples:
            .. code-block:: python

5867 5868 5869 5870
                import paddle
                import paddle.static as static

                paddle.enable_static()
5871

5872
                prog = static.default_main_program()
5873 5874
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5875
        """
Y
Yu Yang 已提交
5876 5877
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5878
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5879 5880 5881 5882 5883
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5884

Y
yuyang18 已提交
5885 5886 5887 5888 5889
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5890
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5891 5892 5893
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5894 5895 5896 5897
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5898
    def _rollback(self):
Y
yuyang18 已提交
5899 5900 5901 5902 5903
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5904 5905
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5906
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5917 5918 5919
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5920
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5921

W
Wu Yi 已提交
5922
    def _copy_param_info_from(self, other):
5923
        """
5924
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5925

Y
yuyang18 已提交
5926 5927 5928
        Notes: This is a very low level API. Users should not invoke it
        directly.

5929 5930 5931 5932 5933 5934 5935
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5936 5937 5938
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5939

W
Wu Yi 已提交
5940
        self.global_block()._copy_param_info_from(other.global_block())
5941

5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5953 5954 5955
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5956 5957
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5958
        self._parameters_on_pservers = other._parameters_on_pservers
5959
        self._endpoints = other._endpoints
5960
        self._ps_endpoint = other._ps_endpoint
5961 5962
        self._distributed_lookup_table = other._distributed_lookup_table

5963
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5964 5965
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5966

Y
yuyang18 已提交
5967 5968 5969
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5970 5971
        Args:
            other(Program): Other program
5972 5973 5974 5975
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5976 5977 5978 5979 5980

        Returns:
            None
        """
        if not isinstance(other, Program):
5981 5982 5983
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5984

5985 5986 5987 5988 5989
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5990 5991 5992

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5993 5994
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5995
            for var in list(block.vars.values()):
5996 5997 5998 5999 6000 6001 6002
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6003

6004
    def list_vars(self):
Y
yuyang18 已提交
6005
        """
6006
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6007

J
Jiabin Yang 已提交
6008
        Returns:
6009
            iterable Tensors: The Generator will yield every Tensor in this program.
6010 6011 6012 6013

        Examples:
            .. code-block:: python

6014 6015
                import paddle
                import paddle.static as static
6016

6017 6018 6019 6020 6021
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6022 6023
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6024

6025 6026
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
6027
        """
6028
        for each_block in self.blocks:
6029
            for each_var in list(each_block.vars.values()):
6030 6031
                yield each_var

6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6042 6043 6044 6045
                import paddle
                import paddle.static as static

                paddle.enable_static()
6046

6047 6048
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6049
                hidden = static.nn.fc(x=data, size=10)
6050 6051
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6052 6053 6054 6055 6056 6057 6058

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6059 6060
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
6238

6239
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6240
class Parameter(Variable):
6241
    """
6242
    Parameter is derived from Variable. A parameter is a persistable
6243
    Variable, and will be updated by optimizers after each iteration.
6244
    The training of a neural network is essentially the updating of
6245 6246
    its parameters.

6247
    Relative to a general Variable, a Parameter has several its own
6248 6249
    member variables:

6250 6251 6252 6253 6254 6255 6256 6257 6258 6259
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6260 6261
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6262 6263
    """

6264 6265 6266 6267 6268 6269
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6270 6271 6272 6273 6274
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6275
        if len(shape) == 0:
6276 6277
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6278 6279 6280

        for each in shape:
            if each < 0:
6281 6282 6283
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6284 6285

        Variable.__init__(
6286 6287 6288 6289 6290 6291 6292
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
6293 6294 6295 6296
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6297 6298
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6299
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6300

6301 6302
        self.need_clip = kwargs.get('need_clip', True)

6303 6304
        self.is_distributed = False

6305 6306
        self.is_parameter = True

F
fengjiayi 已提交
6307
    def __str__(self):
6308
        return self._to_readable_code()
F
fengjiayi 已提交
6309

F
update  
fengjiayi 已提交
6310 6311 6312
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6313

F
update  
fengjiayi 已提交
6314 6315 6316 6317 6318 6319 6320 6321
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6322 6323 6324 6325 6326 6327 6328 6329 6330
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6331 6332 6333 6334 6335 6336
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6337
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6338
            for attr_name in additional_attr:
6339 6340
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6341 6342
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6343 6344 6345 6346
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6347

6348 6349
class ParamBase(core.VarBase):
    """
6350 6351 6352
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6353 6354 6355
    The training of a neural network is essentially the updating of
    its ParamBase.

6356
    Relative to a general Tensor, a ParamBase has several its own
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6369 6370
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6401 6402
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6403 6404 6405 6406 6407 6408 6409

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6410 6411
        self.need_clip = kwargs.get('need_clip', True)

6412
        self.is_distributed = kwargs.get('is_distributed', False)
6413
        # self.block = default_main_program().global_block()
6414

6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6428
    def __str__(self):
6429
        """
6430
        Convert a ParamBase object to a readable string.
6431

6432
        Returns(str): A readable string.
6433 6434 6435 6436

        Examples:
            .. code-block:: python

6437
                import paddle
6438 6439 6440 6441 6442 6443 6444
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6445
        """
6446 6447
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6448

6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6460

6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6479 6480 6481 6482
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6483 6484 6485 6486 6487 6488
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
6489
    _core_eager_eagertensor = core.eager.Tensor
6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

        super(EagerParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape)
            if shape else [], name, core.VarDesc.VarType.LOD_TENSOR, True)
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
        # self.block = default_main_program().global_block()

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6630 6631
        return new_param

6632 6633 6634
    __repr__ = __str__


Y
Yu Yang 已提交
6635
# program is a global instance.
Y
Yu Yang 已提交
6636 6637
_main_program_ = Program()
_startup_program_ = Program()
6638
_startup_program_._is_start_up_program_ = True
6639

6640

6641
def default_startup_program():
Y
Yu Yang 已提交
6642
    """
Y
yuyang18 已提交
6643 6644
    Get default/global startup program.

6645 6646
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6647

6648 6649
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6650

6651 6652
    Returns:
        Program: current default startup program.
6653

6654
    Returns type: 
6655 6656 6657 6658

    Examples:
        .. code-block:: python

6659
            import paddle
6660

6661
            paddle.enable_static()
6662 6663 6664 6665
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6666
    """
Y
Yu Yang 已提交
6667
    return _startup_program_
6668

6669

6670
def default_main_program():
Y
Yu Yang 已提交
6671
    """
6672
    This API can be used to get ``default main program`` which store the 
6673
    descriptions of Ops and tensors.
T
tangwei12 已提交
6674

6675
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6676
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6677

6678 6679
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6680
    :code:`default_main_program` when the program is not specified.
6681

6682
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6683

Y
Yu Yang 已提交
6684
    Returns:
6685
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6686 6687 6688 6689

    Examples:
        ..  code-block:: python

6690
            import paddle
6691

6692
            paddle.enable_static()
6693
            # Sample Network:
6694 6695 6696
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6697

6698 6699 6700
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6701
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6702
    """
Y
Yu Yang 已提交
6703
    return _main_program_
Y
Yu Yang 已提交
6704 6705 6706 6707 6708


def switch_main_program(program):
    """
    Switch the main program to a new program.
6709

Y
Yu Yang 已提交
6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6724
    Switch the startup program to a new program
Y
Yu Yang 已提交
6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6737
@signature_safe_contextmanager
Y
Yu Yang 已提交
6738 6739
def program_guard(main_program, startup_program=None):
    """
6740 6741
    :api_attr: Static Graph

6742 6743 6744
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6745

G
guofei 已提交
6746
    Args:
6747 6748
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6749 6750 6751 6752
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6753
    Examples:
6754
       .. code-block:: python
T
tangwei12 已提交
6755

6756
          import paddle
Y
yuyang18 已提交
6757

6758 6759 6760 6761 6762
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6763
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6764 6765 6766

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6767

Y
Yu Yang 已提交
6768
    Examples:
6769
       .. code-block:: python
Y
yuyang18 已提交
6770

6771
          import paddle
6772

6773 6774 6775 6776 6777
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6778

Y
Yu Yang 已提交
6779
    """
6780
    from .data_feeder import check_type
6781 6782
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6783 6784
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6785
        check_type(startup_program, 'startup_program', Program,
6786
                   'paddle.static.program_guard')
6787 6788
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6789
        startup_program = switch_startup_program(startup_program)
6790 6791 6792 6793 6794 6795
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6796 6797


W
Wu Yi 已提交
6798
def _get_var(name, program=None):
X
xuwei06 已提交
6799
    """
Y
yuyang18 已提交
6800
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6801

X
xuwei06 已提交
6802 6803 6804
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6805
        If None, default_global_program() will be used.
X
xuwei06 已提交
6806 6807 6808 6809 6810 6811 6812

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6813
    assert isinstance(program, Program)
X
xuwei06 已提交
6814 6815

    return program.global_block().var(name)
6816 6817


S
rename  
sneaxiy 已提交
6818
@signature_safe_contextmanager
L
lujun 已提交
6819 6820
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6821
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6822
    _dygraph_tracer_ = tracer
6823
    core._switch_tracer(tracer)
M
minqiyang 已提交
6824

6825 6826 6827
    try:
        yield
    finally:
6828 6829
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6830 6831


S
rename  
sneaxiy 已提交
6832
@signature_safe_contextmanager
L
lujun 已提交
6833
def _dygraph_place_guard(place):
6834 6835 6836
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
6837 6838
    _set_dygraph_tracer_expected_place(place)

6839 6840 6841
    try:
        yield
    finally:
6842
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
6843
        _set_dygraph_tracer_expected_place(_global_expected_place_)
6844 6845


6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6862 6863
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6864 6865 6866 6867 6868 6869 6870 6871 6872
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6873
            import paddle
6874

Z
Zhang Ting 已提交
6875 6876 6877
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6878
            if support_gpu:
Z
Zhang Ting 已提交
6879
                place = paddle.CUDAPlace(0)
6880 6881

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6882 6883 6884
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6885

Z
Zhang Ting 已提交
6886
            with paddle.static.device_guard("cpu"):
6887
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6888 6889
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6890
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6891
                out = paddle.reshape(data1, shape=shape)
6892

Z
Zhang Ting 已提交
6893 6894
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6895 6896 6897
            result = exe.run(fetch_list=[out])
    """

6898 6899 6900 6901 6902
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6903
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6904
        raise ValueError(
6905
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6906
            "when there is no need to specify device. But received %s" % device)
6907 6908
    if index:
        device = ":".join([device, index])
6909
    pre_device = switch_device(device)
6910 6911 6912 6913
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6914 6915 6916 6917 6918


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6919
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6920 6921 6922 6923 6924 6925 6926

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6927 6928
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6929 6930 6931 6932
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6933 6934
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6935 6936 6937 6938 6939 6940 6941 6942
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6943
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6954
            import paddle
G
guofei 已提交
6955 6956

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6957
            res = paddle.get_flags(flags)
G
guofei 已提交
6958 6959 6960 6961 6962 6963
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6964 6965
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6966 6967 6968 6969 6970 6971 6972
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6973 6974
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6975 6976 6977 6978 6979 6980 6981 6982
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6983 6984 6985 6986 6987 6988 6989


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6990
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
6991
                          core.IPUPlace, core.MLUPlace, core.CustomPlace)):
6992 6993 6994 6995 6996 6997 6998 6999 7000
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
7001

7002 7003 7004
    if (place == "device"):
        return core.Place()

7005
    # GPU
7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7021 7022

    # XPU
7023 7024 7025 7026 7027 7028 7029 7030 7031 7032
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7070
    raise ValueError(
J
jianghaicheng 已提交
7071
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".
7072
        format(place))
7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret