math_op_patch.py 18.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from .. import core
18
from ..framework import Variable, convert_np_dtype_to_dtype_, _varbase_creator, _in_legacy_dygraph, in_dygraph_mode
19
from ..layers.layer_function_generator import OpProtoHolder
20
from . import no_grad
J
Jiabin Yang 已提交
21
from .. import framework
22

23
import numpy as np
24
import warnings
W
wanghuancoder 已提交
25
from paddle import _C_ops
26

27 28 29 30 31 32
_supported_int_dtype_ = [
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
33
    core.VarDesc.VarType.BOOL,
34 35
]

36 37 38 39
# NOTE(chenweihang): We currently do not fully support the type promotion
# between tensors. Parting support here is because the interoperation of
# real and complex numbers in paddle quantum is very frequent, such as the
# binary operation between `float` and `complex64`, so we must support the
40 41 42 43 44 45 46 47 48 49
# correct type promotion on the APIs paddle quantum used.
# Now only check in dygraph (paddle quantum based dygraph)
# Full type promotion support will need to be fully verified later.
_supported_promote_complex_types_ = [
    '__add__',
    '__radd__',
    '__sub__',
    '__rsub__',
    '__mul__',
    '__rmul__',
50
    '__div__',
51
    '__truediv__',
52
    '__rdiv__',
53 54 55 56
    '__rtruediv__',
    '__matmul__',
]

57 58 59 60 61
_complex_dtypes = [
    core.VarDesc.VarType.COMPLEX64,
    core.VarDesc.VarType.COMPLEX128,
]

62
_already_patch_varbase = False
63
_already_patch_eager_tensor = False
64

65 66 67 68 69 70 71

def monkey_patch_math_varbase():
    """
    Similar to monkey_patch_variable.
    The difference is, in dygraph mode, use auto-generated op functions for better performance.
    """

72
    @no_grad
73
    def create_tensor(value, dtype, shape):
74 75 76 77 78 79 80
        if framework._in_eager_mode_:
            out = _C_ops.final_state_full(shape, value, dtype,
                                          framework._current_expected_place())
        else:
            out = _varbase_creator(dtype=dtype)
            out = _C_ops.fill_constant(out, 'dtype', dtype, 'shape', shape,
                                       'value', value, 'force_cpu', False)
81 82
        out.stop_gradient = True
        return out
83 84 85 86 87 88 89

    def create_scalar(value, dtype):
        return create_tensor(value, dtype, shape=[1])

    def astype(self, dtype):
        """

90
        Cast a Tensor to a specified data type.
91 92

        Args:
93
            dtype: The target data type.
94 95

        Returns:
96
            Tensor: a new Tensor with target dtype
97 98 99 100

        Examples:
            .. code-block:: python

101
                import paddle
102 103
                import numpy as np

104 105 106 107
                original_tensor = paddle.ones([2, 2])
                print("original tensor's dtype is: {}".format(original_tensor.dtype))
                new_tensor = original_tensor.astype('float32')
                print("new tensor's dtype is: {}".format(new_tensor.dtype))
108 109

        """
110 111
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
112 113 114 115

        if _in_legacy_dygraph():
            return _C_ops.cast(self, 'in_dtype', self.dtype, 'out_dtype', dtype)
        return _C_ops.final_state_cast(self, dtype)
116 117

    def _scalar_elementwise_op_(var, scale, bias):
118 119 120
        if framework.in_dygraph_mode():
            return _C_ops.final_state_scale(var, float(scale), bias, True)
        return _C_ops.scale(var, 'scale', scale, 'bias', bias)
121

122 123 124
    def _neg_(var):
        return _scalar_elementwise_op_(var, -1.0, 0.0)

125 126 127 128 129 130 131 132 133 134 135 136
    def _float_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to float."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        return float(var.numpy().flatten()[0])

    def _long_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to long."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
T
tianshuo78520a 已提交
137
        return int(var.numpy().flatten()[0])
138 139 140 141 142 143 144 145 146

    def _int_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to int."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        return int(var.numpy().flatten()[0])

    def _len_(var):
S
Steffy-zxf 已提交
147 148 149 150 151 152
        if var.type == core.VarDesc.VarType.VOCAB:
            return len(var.value().get_map_tensor())
        elif var.type == core.VarDesc.VarType.STRINGS:
            return len(var.value().get_string_tensor())
        else:
            return var.shape[0]
153 154 155 156 157 158

    def _index_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to python index."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
T
tianshuo78520a 已提交
159
        return int(var.numpy().flatten()[0])
160

161 162 163 164
    @property
    def _ndim_(var):
        return len(var.shape)

165 166 167 168
    @property
    def _size_(var):
        return np.prod(var.shape)

169 170 171 172 173 174 175
    @property
    def _T_(var):
        if len(var.shape) == 1:
            return var
        perm = []
        for i in range(len(var.shape)):
            perm.insert(0, i)
176 177 178 179
        if _in_legacy_dygraph():
            out, _ = _C_ops.transpose2(var, 'axis', perm)
        else:
            out = _C_ops.final_state_transpose(var, perm)
180 181
        return out

182
    def _scalar_add_(var, value):
183 184
        return _scalar_elementwise_op_(var, 1.0, value)

185
    def _scalar_sub_(var, value):
186 187
        return _scalar_elementwise_op_(var, 1.0, -value)

188
    def _scalar_rsub_(var, value):
189 190
        return _scalar_elementwise_op_(var, -1.0, value)

191
    def _scalar_mul_(var, value):
192 193
        return _scalar_elementwise_op_(var, value, 0.0)

194 195 196
    def _scalar_div_(var, value):
        return _scalar_elementwise_op_(var, 1.0 / value, 0.0)

197 198 199 200
    # for binary operator such as elementwise, compare
    def _binary_creator_(method_name,
                         op_type,
                         reverse=False,
201 202
                         scalar_method=None,
                         call_final_api=False):
203

204
        def __impl__(self, other_var):
205 206 207 208 209 210 211 212 213
            # 1. scalar exists cases
            # we need combine the tensor.dtype and scalar.dtype, cast correct object
            if isinstance(other_var, float):
                # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float
                if self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
214
                    return scalar_method(self, other_var)
215 216 217 218 219 220
            elif isinstance(other_var, int):
                # in all cases(+, -, *, /, **, //, %), we can cast it to float
                # because the output tensor.dtype depend on the type of input tensor
                other_var = float(other_var)
                # division is a special case
                # NOTE(chenweihang): because we cast tensor to float32 instead float64,
221 222 223
                # the division result can only guarantee the numerical accuracy of 6 digits
                # after the decimal point. The result of numpy calculation is of float64 type,
                # so the calculation result here and the calculation result of numpy are
224 225
                # different after 6 decimal point. If necessary, we can also use float64 here.
                # torch's behavior here is consistent with ours
226 227
                if (op_type == "final_state_divide"
                        or op_type == "elementwise_div"
228
                    ) and self.dtype in _supported_int_dtype_:
229 230
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
231
                # but only +, -, *, / can use this method
232 233 234 235 236
                if scalar_method is not None:
                    return scalar_method(self, other_var)
            else:
                # do nothing
                pass
237

238
            # 2. create varbase for scalar
239
            lhs_dtype = self.dtype
J
Jiabin Yang 已提交
240
            if framework._in_eager_mode_:
241
                other_var_should_be = core.eager.Tensor
242 243 244
            else:
                other_var_should_be = core.VarBase
            if not isinstance(other_var, other_var_should_be):
245 246 247
                if isinstance(other_var, complex):
                    import paddle
                    other_var = paddle.to_tensor(other_var, dtype='complex64')
248
                else:
249
                    if reverse:
250 251 252
                        other_var = create_tensor(other_var,
                                                  dtype=lhs_dtype,
                                                  shape=self.shape)
253 254
                    else:
                        # add fill_op
255 256
                        other_var = create_scalar(value=other_var,
                                                  dtype=lhs_dtype)
257

258
            # 3. promote types or unify right var type to left var
259
            rhs_dtype = other_var.dtype
260
            if lhs_dtype != rhs_dtype:
261
                if method_name in _supported_promote_complex_types_ and (
262 263
                        lhs_dtype in _complex_dtypes
                        or rhs_dtype in _complex_dtypes):
264 265 266 267 268 269 270 271 272 273
                    # only when lhs_dtype or rhs_dtype is complex type,
                    # the dtype will promote, in other cases, directly
                    # use lhs_dtype, this is consistent will original rule
                    promote_dtype = core._promote_types_if_complex_exists(
                        lhs_dtype, rhs_dtype)
                    self = self if lhs_dtype == promote_dtype else astype(
                        self, promote_dtype)
                    other_var = other_var if rhs_dtype == promote_dtype else astype(
                        other_var, promote_dtype)
                else:
274
                    warnings.warn(
275 276
                        'The dtype of left and right variables are not the same, left dtype is {}, but right dtype is {}, the right dtype will convert to {}'
                        .format(lhs_dtype, rhs_dtype, lhs_dtype))
277 278
                    other_var = astype(other_var, lhs_dtype)

279 280 281 282 283
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

284 285
            if (op_type == "final_state_divide" or op_type == "elementwise_div"
                ) and self.dtype in _supported_int_dtype_:
286 287 288
                self = astype(self, 'float32')
                other_var = astype(other_var, 'float32')

289
            # 4. calculation
290
            axis = -1
291 292
            math_op = getattr(_C_ops, op_type)
            if call_final_api:
293 294
                if op_type == "final_state_matmul":
                    return math_op(self, other_var, False, False)
295 296
                return math_op(self, other_var, -1)
            return math_op(self, other_var, 'axis', axis)
297

298 299 300 301
        if call_final_api:
            comment = ""
        else:
            comment = OpProtoHolder.instance().get_op_proto(op_type).comment
302 303 304 305

        __impl__.__doc__ = """
        {0}
        Args:
306
            other_var(Tensor|float|int): right hand Tensor
307 308

        Returns:
309
            Tensor
310 311 312 313
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

314 315 316 317 318 319 320 321 322 323 324
    varbase_methods = [
        ('__neg__', _neg_),
        ('__float__', _float_),
        ('__long__', _long_),
        ('__int__', _int_),
        ('__len__', _len_),
        ('__index__', _index_),
        ('astype', astype),
        ('dim', lambda x: len(x.shape)),
        ('ndimension', lambda x: len(x.shape)),
        ('ndim', _ndim_),
325
        ('size', _size_),
326
        ('T', _T_),
327 328 329 330 331
        ('__add__',
         _binary_creator_('__add__', 'final_state_add', False, _scalar_add_,
                          True)) if framework._in_eager_mode_ else
        ('__add__',
         _binary_creator_('__add__', 'elementwise_add', False, _scalar_add_)),
332
        ##  a+b == b+a. Do not need to reverse explicitly
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
        ('__radd__',
         _binary_creator_('__radd__', 'final_state_add', False, _scalar_add_,
                          True)) if framework._in_eager_mode_ else
        ('__radd__',
         _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
        ('__sub__',
         _binary_creator_('__sub__', 'final_state_subtract', False,
                          _scalar_sub_, True)) if framework._in_eager_mode_ else
        ('__sub__',
         _binary_creator_('__sub__', 'elementwise_sub', False, _scalar_sub_)),
        ('__rsub__',
         _binary_creator_('__rsub__', 'final_state_subtract', True,
                          _scalar_rsub_, True))
        if framework._in_eager_mode_ else
        ('__rsub__',
         _binary_creator_('__rsub__', 'elementwise_sub', True, _scalar_rsub_)),
        ('__mul__',
         _binary_creator_('__mul__', 'final_state_multiply', False,
                          _scalar_mul_, True)) if framework._in_eager_mode_ else
        ('__mul__',
         _binary_creator_('__mul__', 'elementwise_mul', False, _scalar_mul_)),
354
        ## a*b == b*a. Do not need to reverse explicitly
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
        ('__rmul__',
         _binary_creator_('__rmul__', 'final_state_multiply', False,
                          _scalar_mul_, True)) if framework._in_eager_mode_ else
        ('__rmul__',
         _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
        ('__div__',
         _binary_creator_('__div__', 'final_state_divide', False, _scalar_div_,
                          True)) if framework._in_eager_mode_ else
        ('__div__',
         _binary_creator_('__div__', 'elementwise_div', False, _scalar_div_)),
        ('__truediv__',
         _binary_creator_('__truediv__', 'final_state_divide', False,
                          _scalar_div_, True)) if framework._in_eager_mode_ else
        ('__truediv__',
         _binary_creator_('__truediv__', 'elementwise_div', False,
                          _scalar_div_)),
        ('__rdiv__',
         _binary_creator_('__rdiv__', 'final_state_divide', True, None, True))
        if framework._in_eager_mode_ else
        ('__rdiv__',
         _binary_creator_('__rdiv__', 'elementwise_div', True, None)),
        ('__rtruediv__',
         _binary_creator_('rtruediv__', 'final_state_divide', True, None, True))
        if framework._in_eager_mode_ else
        ('__rtruediv__',
         _binary_creator_('rtruediv__', 'elementwise_div', True, None)),
381 382 383 384 385
        ('__pow__',
         _binary_creator_('__pow__', 'final_state_elementwise_pow', False, None,
                          True)) if framework._in_eager_mode_ else
        ('__pow__',
         _binary_creator_('__pow__', 'elementwise_pow', False, None)),
386 387
        ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
                                      None)),
388 389
        ('__floordiv__',
         _binary_creator_('__floordiv__', 'elementwise_floordiv', False, None)),
390 391 392 393 394 395 396 397 398 399
        ('__mod__',
         _binary_creator_('__mod__', 'final_state_modulo', False, None, True))
        if framework._in_eager_mode_ else
        ('__mod__',
         _binary_creator_('__mod__', 'elementwise_mod', False, None)),
        ('__matmul__',
         _binary_creator_('__matmul__', "final_state_matmul", False, None,
                          True)) if framework._in_eager_mode_ else
        ('__matmul__',
         _binary_creator_('__matmul__', "matmul_v2", False, None)),
400
        ## for logical compare
401 402 403
        ('__eq__',
         _binary_creator_('__eq__', 'final_state_equal', False, None, True))
        if framework._in_eager_mode_ else
404
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
405 406
        ('__ne__',
         _binary_creator_('__ne__', 'final_state_not_equal', False, None, True))
407
        if framework._in_eager_mode_ else
408 409 410
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__',
         _binary_creator_('__lt__', 'final_state_less_than', False, None, True))
411
        if framework._in_eager_mode_ else
412 413 414 415 416 417 418 419 420 421 422 423
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__',
         _binary_creator_('__le__', 'final_state_less_equal', False, None,
                          True)) if framework._in_eager_mode_ else
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__',
         _binary_creator_('__gt__', 'final_state_greater_than', False, None,
                          True)) if framework._in_eager_mode_ else
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
        ('__ge__',
         _binary_creator_('__ge__', 'final_state_greater_equal', False, None,
                          True)) if framework._in_eager_mode_ else
424
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None)),
425
        ('__array_ufunc__', None)
426 427 428
    ]

    global _already_patch_varbase
429 430
    global _already_patch_eager_tensor

J
Jiabin Yang 已提交
431
    if framework._in_eager_mode_:
432 433
        local_already_patch = _already_patch_eager_tensor
        _already_patch_eager_tensor = True
434
        local_tensor = core.eager.Tensor
435 436 437 438
    else:
        local_already_patch = _already_patch_varbase
        _already_patch_varbase = True
        local_tensor = core.VarBase
439

440
    if not local_already_patch:
441 442 443
        for method in varbase_methods:
            method_name = method[0]
            method_impl = method[1]
444
            setattr(local_tensor, method_name, method_impl)
445 446
    else:
        import paddle.tensor
447
        # Tensor method from module paddle.tensor
448
        for method_name in paddle.tensor.tensor_method_func:
449
            if hasattr(local_tensor, method_name): continue
450
            method_impl = getattr(paddle.tensor, method_name, None)
451
            if method_impl: setattr(local_tensor, method_name, method_impl)
452

453 454
        for magic_method, origin_method in paddle.tensor.magic_method_func:
            impl = getattr(paddle.tensor, origin_method, None)
455
            if impl: setattr(local_tensor, magic_method, impl)