common.py 93.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops, _legacy_C_ops
X
xiaoting 已提交
17
from paddle.fluid.layer_helper import LayerHelper
18
from paddle.fluid.layers.tensor import fill_constant
19 20 21
from paddle.framework import core, in_dynamic_mode
from paddle.static import Variable, default_main_program
from paddle.tensor.creation import full
22 23 24 25

from ...fluid.data_feeder import (
    check_dtype,
    check_type,
26
    check_variable_and_dtype,
27
)
28
from ...fluid.framework import in_dygraph_mode
29 30
from ...tensor import clip, concat, sqrt, sum
from ...tensor.creation import zeros
Z
zhiboniu 已提交
31

32 33
# TODO: define the common functions to build a neural network
from ...tensor.manipulation import squeeze, unsqueeze
34

35 36
__all__ = []

X
xiaoting 已提交
37

38 39 40
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    r"""

41
    Return a col buffer of sliding local blocks of input x, also known
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter sliding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1

        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]

        Lout &= hout \times wout


    Parameters:
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
                                  data type can be float32 or float64
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
69
        strides(int|list, optional):        The strides, should be [stride_h, stride_w]
70 71
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
72
        paddings(int|list, optional):       The paddings of each dimension, should be
73 74 75 76 77 78
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
79
        dilations(int|list, optional):      the dilations of convolution kernel, should be
80 81 82 83 84 85 86 87
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
88
        Tensor, The tensor corresponding to the sliding local blocks.
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
        The data type of output is the same as the input :math:`x`

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
    """

105
    assert len(x.shape) == 4, "input should be the format of [N, C, H, W]"
106 107 108 109

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
110 111 112
        assert isinstance(kernel_sizes, list) and (
            len(kernel_sizes) == 2
        ), "kernel_sizes should either be an integer or a list of two integers"
113 114 115 116

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
117 118 119
        assert isinstance(strides, list) and (
            len(strides) == 2
        ), "strides should either be an integer or a list of two integers"
120 121 122 123

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
124 125 126
        assert isinstance(dilations, list) and (
            len(dilations) == 2
        ), "dilations should either be an integer or a list of two integers"
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
142 143
            "of 2 or 4 integers"
        )
144 145

    if in_dygraph_mode():
146
        return _C_ops.unfold(x, kernel_sizes, strides, paddings, dilations)
147

148 149 150
    helper = LayerHelper("unfold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'unfold')
151
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
152 153 154 155 156 157 158 159 160 161 162
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations,
        },
    )
163 164 165
    return out


166 167 168 169 170 171 172 173 174 175
def interpolate(
    x,
    size=None,
    scale_factor=None,
    mode='nearest',
    align_corners=False,
    align_mode=0,
    data_format='NCHW',
    name=None,
):
X
xiaoting 已提交
176
    """
S
swtkiwi 已提交
177

178
    This API resizes a batch of images.
179

180 181
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
X
xiaoting 已提交
182
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
183 184
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
185
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
186

X
xiaoting 已提交
187
    Supporting resample methods:
188 189 190 191 192 193 194

    - 'linear' : Linear interpolation
    - 'bilinear' : Bilinear interpolation
    - 'trilinear' : Trilinear interpolation
    - 'nearest' : Nearest neighbor interpolation
    - 'bicubic' : Bicubic interpolation
    - 'area': Area interpolation
195

196 197 198
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
213
    align_corners and align_mode are optional parameters,the calculation method
X
xiaoting 已提交
214 215 216 217 218 219 220
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

221 222
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
223 224
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
225 226
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
227 228 229 230
    Example:

    .. code-block:: text

231
        # For scale_factor:
X
xiaoting 已提交
232 233 234 235 236
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

237
        # Linear interpolation:
238 239 240 241 242 243 244 245 246
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
247

248
        # Nearest neighbor interpolation:
X
xiaoting 已提交
249

X
xiaoting 已提交
250 251 252 253 254
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
255

256
        # Bilinear interpolation:
X
xiaoting 已提交
257 258 259 260 261 262 263 264 265 266 267 268
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

269
        # Bicubic interpolation:
X
xiaoting 已提交
270 271 272 273 274 275 276 277 278 279 280 281
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

282
        # Trilinear interpolation:
X
xiaoting 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

297 298
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
299

X
xiaoting 已提交
300 301
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
302

X
xiaoting 已提交
303 304
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
305

X
xiaoting 已提交
306 307
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
308

X
xiaoting 已提交
309 310
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
311

X
xiaoting 已提交
312
    Parameters:
X
xiaoting 已提交
313
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
X
xiaoting 已提交
314
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
315
        size (list|tuple|Tensor|None): Output shape of image resize
316 317
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
318
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
319
             If a Tensor, its dimensions size should be a 1.
320 321 322
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
323
             Default: None.
324
        mode (str): The resample method. It supports 'linear', 'area', 'nearest', 'bilinear',
325
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
X
xiaoting 已提交
326 327
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
X
xiaoting 已提交
328
                               corner pixels.This only has an effect when 'linear', 'bilinear', 'bicubic' or 'trilinear'.
329 330 331 332
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
X
xiaoting 已提交
333
        data_format (str, optional): Specify the data format of the input, and the data format of the output
334
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`,  `"NCHW"`, `"NHWC"`, `"NCDHW"`,
X
xiaoting 已提交
335 336 337
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
338 339 340
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
X
xiaoting 已提交
341
    Returns:
342
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
X
xiaoting 已提交
343 344
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
345

346

X
xiaoting 已提交
347 348 349
    Examples:
        .. code-block:: python

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
            import paddle
            import paddle.nn.functional as F

            input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
            output_1 = F.interpolate(x=input_data, size=[12,12])
            print(output_1.shape)
            # [2L, 3L, 12L, 12L]

            # given scale
            output_2 = F.interpolate(x=input_data, scale_factor=[2,1])
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]

            # bilinear interp
            output_3 = F.interpolate(x=input_data, scale_factor=[2,1], mode="bilinear")
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]
X
xiaoting 已提交
367
    """
368 369 370 371 372 373 374 375 376 377
    data_format = data_format.upper()
    resample = mode.upper()
    resample_type = mode.lower()

    resample_methods = [
        'LINEAR',
        'BILINEAR',
        'TRILINEAR',
        'NEAREST',
        'BICUBIC',
378
        'AREA',
379
    ]
X
xiaoting 已提交
380 381
    if resample not in resample_methods:
        raise ValueError(
382
            "The 'resample' of image_resize can only be 'area', 'linear', 'bilinear', 'trilinear', "
383 384
            " 'bicubic' or 'nearest' currently."
        )
X
xiaoting 已提交
385

X
xiaoting 已提交
386
    if resample in ['LINEAR'] and len(x.shape) != 3:
387
        raise ValueError("'linear' only support 3-D tensor.")
388

389 390 391 392 393
    if resample in ['NEAREST'] and len(x.shape) != 4 and len(x.shape) != 5:
        raise ValueError("'NEAREST' only support 4-D  or 5-D tensor.")

    if resample in ['BILINEAR', 'BICUBIC'] and len(x.shape) != 4:
        raise ValueError("'bilinear' and 'bicubic' only support 4-D tensor.")
X
xiaoting 已提交
394
    if resample == 'TRILINEAR' and len(x.shape) != 5:
395 396 397 398
        raise ValueError("'trilinear'only support 5-D tensor.")

    if size is None and scale_factor is None:
        raise ValueError("One of size and scale_factor must not be None.")
X
xiaoting 已提交
399

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    if (isinstance(size, list) or isinstance(size, tuple)) and len(
        size
    ) != x.ndim - 2:
        raise ValueError(
            'The x and size should satisfy rank(x) - 2 == len(size).'
        )

    if isinstance(size, Variable):
        if size.ndim != 1:
            raise ValueError(
                f"If size is a tensor, it's rank must be 1, but received {size.ndim}."
            )
        if size.shape[0] != x.ndim - 2:
            raise ValueError(
                'The x and size should satisfy rank(x) - 2 == size.shape[0].'
            )

X
xiaoting 已提交
417 418
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
419

X
xiaoting 已提交
420 421
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")
X
xiaoting 已提交
422 423 424 425
    if align_corners != 0 and resample == 'NEAREST':
        raise ValueError(
            "align_corners option can only be set with the interpolating modes: linear | bilinear | bicubic | trilinear"
        )
426

X
xiaoting 已提交
427
    if resample == 'AREA':
428 429 430 431 432
        if (
            isinstance(size, list)
            or isinstance(size, tuple)
            or isinstance(size, Variable)
        ):
X
xiaoting 已提交
433 434 435 436 437 438 439 440
            if len(size) == 0:
                raise ValueError("output size can not be empty")
        if len(x.shape) == 3:
            return paddle.nn.functional.adaptive_avg_pool1d(x, size)
        elif len(x.shape) == 4:
            return paddle.nn.functional.adaptive_avg_pool2d(x, size)
        elif len(x.shape) == 5:
            return paddle.nn.functional.adaptive_avg_pool3d(x, size)
X
xiaoting 已提交
441 442
    helper = LayerHelper('{}_interp_v2'.format(resample_type), **locals())
    if len(x.shape) == 3 and data_format not in ['NCW', 'NWC']:
443
        raise ValueError(
444 445 446 447
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCW` or `NWC` supported for 3-D input."
        )
X
xiaoting 已提交
448
    elif len(x.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
X
xiaoting 已提交
449
        raise ValueError(
450 451 452 453
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCHW` or `NHWC` supported for 4-D input."
        )
X
xiaoting 已提交
454
    elif len(x.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
X
xiaoting 已提交
455
        raise ValueError(
456 457 458 459
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCDHW` or `NDHWC` supported for 5-D input."
        )
X
xiaoting 已提交
460 461

    def _is_list_or_turple_(data):
462
        return isinstance(data, list) or isinstance(data, tuple)
X
xiaoting 已提交
463

464
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
X
xiaoting 已提交
465
        data_layout = 'NCHW'
466
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
X
xiaoting 已提交
467 468
        data_layout = 'NHWC'

X
xiaoting 已提交
469 470 471 472
    if resample == 'NEAREST':
        align_corners = False

    inputs = {"X": x}
X
xiaoting 已提交
473 474 475 476 477 478 479
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
480
        "data_layout": data_layout,
X
xiaoting 已提交
481 482
    }

483 484
    out_shape = size
    scale = scale_factor
485 486
    if out_shape is not None and scale is not None:
        raise ValueError("Only one of size or scale_factor should be defined.")
X
xiaoting 已提交
487
    if out_shape is not None:
Z
zhiboniu 已提交
488
        if isinstance(out_shape, Variable) and not in_dynamic_mode():
X
xiaoting 已提交
489 490 491
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
Z
zhiboniu 已提交
492
            if in_dynamic_mode():
493 494
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
X
xiaoting 已提交
495 496
                else:
                    out_shape = list(out_shape)
497 498 499
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
X
xiaoting 已提交
500
            if not (_is_list_or_turple_(out_shape)):
501
                raise TypeError("size should be a list or tuple or Variable.")
X
xiaoting 已提交
502 503 504 505 506 507
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
508 509 510
                assert (
                    dim_size > 0
                ), "Each dimension size given in out_shape must be greater than 0."
X
xiaoting 已提交
511 512 513 514 515 516 517 518 519 520

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
521
                        assert isinstance(dim, int)
X
xiaoting 已提交
522
                        temp_out = helper.create_variable_for_type_inference(
523 524 525 526 527
                            'int32'
                        )
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out
                        )
X
xiaoting 已提交
528 529 530 531
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

X
xiaoting 已提交
532
            if len(x.shape) == 3:
533 534
                if len(out_shape) != 1:
                    raise ValueError(
535 536
                        "size length should be 2 for input 3-D tensor"
                    )
537 538 539 540 541
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
X
xiaoting 已提交
542
            if len(x.shape) == 4:
X
xiaoting 已提交
543
                if len(out_shape) != 2:
544 545 546
                    raise ValueError(
                        "size length should be 2 for " "input 4-D tensor."
                    )
X
xiaoting 已提交
547 548 549 550 551 552 553
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
X
xiaoting 已提交
554
            if len(x.shape) == 5:
X
xiaoting 已提交
555
                if len(out_shape) != 3:
556 557 558
                    raise ValueError(
                        "size length should be 3 for " "input 5-D tensor."
                    )
X
xiaoting 已提交
559 560 561 562 563 564 565 566 567 568 569
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
Z
zhiboniu 已提交
570
        if in_dynamic_mode() and isinstance(scale, Variable):
571
            scale = list(scale.numpy())
X
xiaoting 已提交
572 573 574 575 576 577
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        elif isinstance(scale, float) or isinstance(scale, int):
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
X
xiaoting 已提交
578 579 580 581
            scale_list = []
            for i in range(len(x.shape) - 2):
                scale_list.append(scale)
            attrs['scale'] = list(map(float, scale_list))
X
xiaoting 已提交
582
        elif isinstance(scale, list) or isinstance(scale, tuple):
X
xiaoting 已提交
583
            if len(scale) != len(x.shape) - 2:
584 585 586 587
                raise ValueError(
                    "scale_shape length should be {} for "
                    "input {}-D tensor.".format(len(x.shape) - 2, len(x.shape))
                )
X
xiaoting 已提交
588 589 590 591
            for value in scale:
                if value <= 0:
                    raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = list(map(float, scale))
X
xiaoting 已提交
592 593
        else:
            raise TypeError(
594 595
                "Attr(scale)'s type should be float, int, list, tuple, or Tensor."
            )
X
xiaoting 已提交
596

Z
zhiboniu 已提交
597
    if in_dynamic_mode():
X
xiaoting 已提交
598 599 600 601 602 603 604
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
605
            if in_dygraph_mode():
606
                out = _C_ops.linear_interp(
607 608
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
609 610
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
611 612 613 614 615 616 617 618 619
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
620
            else:
621
                out = _legacy_C_ops.linear_interp_v2(x, *dy_attr)
622
        elif resample_type == "bilinear":
623
            if in_dygraph_mode():
624
                out = _C_ops.bilinear_interp(
625 626
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
627 628
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
629 630 631 632 633 634 635 636 637
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
638
            else:
639
                out = _legacy_C_ops.bilinear_interp_v2(x, *dy_attr)
640
        elif resample_type == "trilinear":
641
            if in_dygraph_mode():
642
                out = _C_ops.trilinear_interp(
643 644
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
645 646
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
647 648 649 650 651 652 653 654 655
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
656
            else:
657
                out = _legacy_C_ops.trilinear_interp_v2(x, *dy_attr)
658
        elif resample_type == "nearest":
659
            if in_dygraph_mode():
660
                out = _C_ops.nearest_interp(
661 662
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
663 664
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
665 666 667 668 669 670 671 672 673
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
674
            else:
675
                out = _legacy_C_ops.nearest_interp_v2(x, *dy_attr)
676
        elif resample_type == "bicubic":
677
            if in_dygraph_mode():
678
                out = _C_ops.bicubic_interp(
679 680
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
681 682
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
683 684 685 686 687 688 689 690 691
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
692
            else:
693
                out = _legacy_C_ops.bicubic_interp_v2(x, *dy_attr)
X
xiaoting 已提交
694
        return out
W
Weilong Wu 已提交
695 696 697

    dtype = helper.input_dtype(input_param_name='x')

X
xiaoting 已提交
698
    out = helper.create_variable_for_type_inference(dtype)
699 700 701 702 703 704
    helper.append_op(
        type='{}_interp_v2'.format(resample_type),
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs,
    )
X
xiaoting 已提交
705
    return out
L
littletomatodonkey 已提交
706 707


708 709 710 711 712 713 714 715 716 717
def upsample(
    x,
    size=None,
    scale_factor=None,
    mode='nearest',
    align_corners=False,
    align_mode=0,
    data_format='NCHW',
    name=None,
):
X
xiaoting 已提交
718
    """
719

720
    This API resizes a batch of images.
721

X
xiaoting 已提交
722 723 724
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
725 726
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
727 728 729
    and the resizing only applies on the three dimensions(depth, height and width).

    Supporting resample methods:
730 731 732 733 734 735
    - 'linear' : Linear interpolation
    - 'bilinear' : Bilinear interpolation
    - 'trilinear' : Trilinear interpolation
    - 'nearest' : Nearest neighbor interpolation
    - 'bicubic' : Bicubic interpolation

736 737 738
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
739 740 741 742 743 744 745 746
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
747

X
xiaoting 已提交
748 749 750 751
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
752

X
xiaoting 已提交
753 754 755
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
756

X
xiaoting 已提交
757 758 759
    The linear interpolation is performed on three directions.
    align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.
760 761 762 763 764 765 766

    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
767
    Example:
768
        .. code-block:: text
769

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
            For scale_factor:
                if align_corners = True && out_size > 1 :
                scale_factor = (in_size-1.0)/(out_size-1.0)
                else:
                scale_factor = float(in_size/out_size)
            Linear interpolation:
                if:
                    align_corners = False , align_mode = 0
                    input : (N,C,W_in)
                    output: (N,C,W_out) where:
                    W_out = (W_{in}+0.5) * scale_{factor} - 0.5
                else:
                    input : (N,C,W_in)
                    output: (N,C,W_out) where:
                    W_out = W_{in} * scale_{factor}
            Nearest neighbor interpolation:
            if:
                align_corners = False
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = floor (H_{in} * scale_{factor})
                W_out = floor (W_{in} * scale_{factor})
X
xiaoting 已提交
792
            else:
793 794 795 796 797 798 799
                align_corners = True
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = round(H_{in} * scale_{factor})
                W_out = round(W_{in} * scale_{factor})

            Bilinear interpolation:
X
xiaoting 已提交
800 801
            if:
                align_corners = False , align_mode = 0
802 803 804
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
X
xiaoting 已提交
805 806
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = H_{in} * scale_{factor}
                W_out = W_{in} * scale_{factor}
            Bicubic interpolation:
            if:
                align_corners = False
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = H_{in} * scale_{factor}
                W_out = W_{in} * scale_{factor}
            Trilinear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,D_in,H_in,W_in)
                output: (N,C,D_out,H_out,W_out) where:
                D_out = (D_{in}+0.5) * scale_{factor} - 0.5
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,D_in,H_in,W_in)
                output: (N,C,D_out,H_out,W_out) where:
                D_out = D_{in} * scale_{factor}
                H_out = H_{in} * scale_{factor}
X
xiaoting 已提交
836
                W_out = W_{in} * scale_{factor}
837

X
xiaoting 已提交
838
    For details of linear interpolation, please refer to Wikipedia:
839
    https://en.wikipedia.org/wiki/Linear_interpolation.
840

X
xiaoting 已提交
841 842
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
843

X
xiaoting 已提交
844 845
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
846

X
xiaoting 已提交
847 848
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
849

X
xiaoting 已提交
850 851
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
852

X
xiaoting 已提交
853 854 855
    Parameters:
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
856
        size (list|tuple|Tensor|None, optional): Output shape of image resize
857 858
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
859
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
860
             If a Tensor , its dimensions size should be a 1.
861
        scale_factor (float|Tensor|list|tuple|None, optional): The multiplier for the input height or width. At
862
             least one of :attr:`size` or :attr:`scale_factor` must be set.
863
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if
864
             it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
865
             Default: None.
866
        mode (str, optional): The resample method. It supports 'linear', 'nearest', 'bilinear',
X
xiaoting 已提交
867
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
868
        align_corners(bool, optional) :  An optional bool, If True, the centers of the 4 corner pixels of the
X
xiaoting 已提交
869 870 871
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
                               Default: False
872
        align_mode(int, optional)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
X
xiaoting 已提交
873 874 875 876 877 878 879 880 881 882
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
883

X
xiaoting 已提交
884 885 886 887
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
888

889 890
    Examples:
        .. code-block:: python
891

892 893
            import paddle
            import paddle.nn as nn
X
xiaoting 已提交
894

895 896
            input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
            upsample_out = paddle.nn.Upsample(size=[12,12])
897

898 899 900
            output = upsample_out(x=input_data)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
X
xiaoting 已提交
901 902

    """
903 904 905
    return interpolate(
        x, size, scale_factor, mode, align_corners, align_mode, data_format
    )
X
xiaoting 已提交
906 907


908 909 910 911
def bilinear(x1, x2, weight, bias=None, name=None):
    """

    This layer performs bilinear on two inputs.
912
    See :ref:`api_nn_Bilinear` for details and output shape.
913 914

    Parameters:
915 916 917 918 919 920
        x1 (Tensor): the first input tensor, it's data type should be float32, float64.
        x2 (Tensor): the second input tensor, it's data type should be float32, float64.
        weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
        bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
        name (str, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
921 922

    Returns:
923
        Tensor: A 2-D Tensor of shape [batch_size, out_features].
924 925

    Examples:
926
        .. code-block:: python
927

928 929
            import paddle
            import paddle.nn.functional as F
930

931 932 933 934
            x1 = paddle.randn((5, 5)).astype(paddle.float32)
            x2 = paddle.randn((5, 4)).astype(paddle.float32)
            w = paddle.randn((1000, 5, 4)).astype(paddle.float32)
            b = paddle.randn((1, 1000)).astype(paddle.float32)
935

936 937 938
            result = F.bilinear(x1, x2, w, b)
            print(result.shape)
            # [5, 1000]
939 940
    """

941
    if in_dygraph_mode():
W
wanghuancoder 已提交
942
        return _C_ops.bilinear_tensor_product(x1, x2, weight, bias)
943 944 945
    else:
        check_variable_and_dtype(x1, 'x1', ['float32', 'float64'], 'bilinear')
        check_variable_and_dtype(x2, 'x2', ['float32', 'float64'], 'bilinear')
946

947 948 949
        inputs = {"X": x1, "Y": x2, "Weight": weight}
        if bias is not None:
            inputs["Bias"] = bias
950

951 952
        helper = LayerHelper("bilinear", **locals())
        out = helper.create_variable_for_type_inference(dtype=x1.dtype)
953

954 955 956
        helper.append_op(
            type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out}
        )
957

958
        return out
959 960


961 962 963
def dropout(
    x, p=0.5, axis=None, training=True, mode="upscale_in_train", name=None
):
964
    r"""
965 966 967 968 969 970 971
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
972 973 974
        p (float|int, optional): Probability of setting units to zero. Default: 0.5.
        axis (int|list|tuple, optional): The axis along which the dropout is performed. Default: None.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
975
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer'].
976

977
            1. upscale_in_train (default), upscale the output at training time
978

979 980
                - train: :math:`out = input \times \frac{mask}{(1.0 - dropout\_prob)}`
                - inference: :math:`out = input`
981

982
            2. downscale_in_infer, downscale the output at inference
983

984 985
                - train: :math:`out = input \times mask`
                - inference: :math:`out = input \times (1.0 - dropout\_prob)`
986

987
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
988 989 990 991

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .

992

993 994
    Examples:
        We use ``p=0.5`` in the following description for simplicity.
995

996
        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
997 998 999

        ..  code-block:: text

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

1025 1026


1027
        2. When ``axis!=None`` , this is useful for dropping whole channels from an image or sequence.
1028 1029 1030

        ..  code-block:: text

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
            Let's see the simple case when x is a 2d tensor with shape 2*3 again:
            [[1 2 3]
             [4 5 6]]
            (1) If ``axis=0`` , this means the dropout is only performed in axis `0` .
                we generate mask with the shape 2*1. Only in axis `0` the value is randomly selected.
                For example, we may get such mask:
                [[1]
                 [0]]
                The output is obtained from elementwise multiply of x and mask. Doing that the mask will be
                broadcast from 2*1 to 2*3:
                [[1 1 1]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[1 2 3]
                 [0 0 0]]
                then we can do upscale or downscale according to the setting of other arguments.
            (2) If ``axis=1`` , this means the dropout is only performed in axis `1` .
                we generate mask with the shape 1*3. Only in axis `1` the value is randomly selected.
                For example, we may get such mask:
                [[1 0 1]]
                Doing elementwise multiply the mask will be broadcast from 1*3 to 2*3:
                [[1 0 1]
                 [1 0 1]]
                and the result after elementwise multiply is:
                [[1 0 3]
                 [4 0 6]]
            (3) What about ``axis=[0, 1]`` ? This means the dropout is performed in all axes of x,
                which is the same case as default setting ``axis=None`` .
1059
            (4) You may note that logically `axis=None` means the dropout is performed in none axis of x,
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
                We generate mask with the shape 1*1. Whole input is randomly selected or dropped.
                For example, we may get such mask:
                [[0]]
                Doing elementwise multiply the mask will be broadcast from 1*1 to 2*3:
                [[0 0 0]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[0 0 0]
                 [0 0 0]]
                Actually this is not what we want because all elements may set to zero~
1070

1071 1072
        When x is a 4d tensor with shape `NCHW`, where `N` is batch size, `C` is the number of channels, H and W are the height and width of the feature, we can set ``axis=[0,1]`` and the dropout will be performed in channel `N` and `C`, `H` and `W` is tied, i.e. paddle.nn.dropout(x, p, axis=[0,1]) . Please refer to ``paddle.nn.functional.dropout2d`` for more details.
        Similarly, when x is a 5d tensor with shape `NCDHW`, where `D` is the depth of the feature, we can set ``axis=[0,1]`` to perform dropout3d. Please refer to ``paddle.nn.functional.dropout3d`` for more details.
1073 1074

        .. code-block:: python
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
            import paddle

            x = paddle.to_tensor([[1,2,3], [4,5,6]]).astype(paddle.float32)
            y_train = paddle.nn.functional.dropout(x, 0.5)
            y_test = paddle.nn.functional.dropout(x, 0.5, training=False)
            y_0 = paddle.nn.functional.dropout(x, axis=0)
            y_1 = paddle.nn.functional.dropout(x, axis=1)
            y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
            print(x)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
            print(y_train)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[2. , 0. , 6. ],
            #         [8. , 0. , 12.]])
            print(y_test)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
            print(y_0)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0. , 0. , 0. ],
            #         [8. , 10., 12.]])
            print(y_1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[2. , 0. , 6. ],
            #         [8. , 0. , 12.]])
            print(y_01)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0. , 0. , 0. ],
            #         [8. , 0. , 12.]])
1108 1109

    """
1110 1111 1112 1113 1114
    if not isinstance(p, (float, int, Variable)):
        raise TypeError("p argument should be a number or Variable")

    if isinstance(p, (int, float)):
        # fast return for p == 0
1115 1116
        if p == 0:
            return x
1117 1118
        elif p < 0 or p > 1:
            raise ValueError("p argument should between 0 and 1")
1119 1120
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
1121 1122
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
        )
1123
    if axis and not isinstance(axis, (int, list, tuple)):
1124 1125
        raise TypeError("datatype of axis argument should be int or list")

1126
    if axis is None:  # commonly used dropout
1127
        seed = None
1128 1129 1130
        mode = (
            'downgrade_in_infer' if mode == 'downscale_in_infer' else mode
        )  # semantic transfer
1131

1132
        if in_dygraph_mode():
1133 1134
            if default_main_program().random_seed != 0:
                seed = default_main_program().random_seed
H
hong 已提交
1135

1136
            out, mask = _C_ops.dropout(
1137
                x,
1138
                None,
1139 1140 1141
                p,
                not training,
                mode,
1142 1143
                seed if seed is not None else 0,
                seed is not None,
1144
            )
1145

1146 1147 1148 1149 1150 1151
            return out
        else:
            helper = LayerHelper('dropout', **locals())
            check_variable_and_dtype(
                x, 'x', ['float16', 'float32', 'float64'], 'dropout'
            )
1152

1153 1154 1155 1156
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            mask = helper.create_variable_for_type_inference(
                dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
            )
1157

1158 1159 1160
            def get_attrs(prog, dropout_prob, is_test, seed):
                if (seed is None or seed == 0) and prog.random_seed != 0:
                    seed = prog.random_seed
1161

1162 1163 1164 1165 1166 1167 1168
                if isinstance(
                    dropout_prob, Variable
                ) and not dropout_prob.shape != [1]:
                    raise TypeError(
                        "Required p.shape == [1] if type(p) is Variable, but received p.shape = {}".format(
                            p.shape
                        )
1169
                    )
1170 1171 1172 1173 1174 1175 1176 1177
                attrs = {
                    'dropout_prob': dropout_prob,
                    'is_test': is_test,
                    'fix_seed': seed is not None,
                    'seed': seed if seed is not None else 0,
                    'dropout_implementation': mode,
                }
                return attrs
1178

1179
            attrs = get_attrs(helper.main_program, p, not training, seed)
1180

1181 1182 1183 1184 1185 1186 1187
            helper.append_op(
                type='dropout',
                inputs={'X': [x]},
                outputs={'Out': [out], 'Mask': [mask]},
                attrs=attrs,
            )
            return out
1188
    else:  # sometimes called dropout_nd #TODO: optimize with c++
Z
zhiboniu 已提交
1189
        if not in_dynamic_mode():
1190 1191 1192 1193
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'dropout')
        dtype = x.dtype
        keep_prob = 1 - p
        if training:
1194 1195
            if in_dynamic_mode() and p == 1.0:
                return paddle.scale(x, scale=0.0)
1196

1197 1198 1199 1200 1201
            scale_input = (
                paddle.scale(x, scale=1 / keep_prob)
                if mode == 'upscale_in_train'
                else x
            )
1202

1203
            # get mask shape
1204
            input_shape = x.shape
Z
zhiboniu 已提交
1205
            if not in_dynamic_mode():
1206
                input_shape_tensor = paddle.shape(x)
1207
            drop_axes = [axis] if isinstance(axis, int) else list(axis)
1208
            if min(drop_axes) < 0 or max(drop_axes) > len(input_shape) - 1:
1209 1210 1211 1212 1213
                raise ValueError(
                    "axis value should be greater than or equal to 0 and less than dimensions of x:{}, but get axis value:{} ".format(
                        len(input_shape), max(drop_axes)
                    )
                )
1214 1215
            if len(drop_axes) > len(input_shape):
                raise ValueError(
1216 1217 1218 1219
                    "length of axis should not be greater than dimensions of x:{}, but get length of axis: {}".format(
                        len(input_shape), len(drop_axes)
                    )
                )
1220
            mask_shape = [1] * len(input_shape)
Z
zhiboniu 已提交
1221
            if not in_dynamic_mode():
1222 1223 1224 1225 1226
                for i in drop_axes:
                    mask_shape[i] = input_shape_tensor[i]
            else:
                for i in drop_axes:
                    mask_shape[i] = input_shape[i]
1227

1228 1229 1230 1231
            # get mask
            random_tensor = paddle.uniform(
                mask_shape, dtype='float32', min=0.0, max=1.0
            )
Z
zhiboniu 已提交
1232
            p = full(shape=[1], fill_value=p, dtype='float32')
1233
            keep_mask = paddle.greater_equal(random_tensor, p)
1234

1235 1236
            scale_input = paddle.cast(scale_input, dtype)
            keep_mask = paddle.cast(keep_mask, dtype)
1237 1238 1239
            ret = paddle.multiply(scale_input, keep_mask, name=name)
            return ret
        else:  # test
1240 1241 1242 1243 1244
            ret = (
                paddle.scale(x, scale=keep_prob)
                if mode == 'downscale_in_infer'
                else x
            )
1245 1246 1247 1248 1249 1250 1251 1252 1253
            return ret


def dropout2d(x, p=0.5, training=True, data_format='NCHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

1254
    See :ref:`api_paddle_nn_functional_dropout` for more details.
1255 1256 1257 1258

    Args:
        x (Tensor):  The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C].
                     The data type is float32 or float64.
1259 1260 1261 1262
        p (float, optional): Probability of setting units to zero. Default: 0.5.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC` . When it is `NCHW` , the data is stored in the order of: [batch_size, input_channels, input_height, input_width]. Default: `NCHW` .
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
1263 1264 1265 1266

    Returns:
        A Tensor representing the dropout2d, has same shape and data type as `x` .

1267

1268 1269
    Examples:
        .. code-block:: python
1270

1271 1272
            import paddle

1273
            x = paddle.randn(shape=(2, 3, 4, 5)).astype(paddle.float32)
1274 1275 1276 1277
            y_train = paddle.nn.functional.dropout2d(x)  #train
            y_test = paddle.nn.functional.dropout2d(x, training=False) #test
            for i in range(2):
                for j in range(3):
1278 1279 1280 1281
                    print(x[i,j,:,:])
                    print(y_train[i,j,:,:]) # may all 0
                    print(y_test[i,j,:,:])

1282 1283 1284
    """
    input_shape = x.shape
    if len(input_shape) != 4:
1285 1286 1287 1288 1289
        raise ValueError(
            "dimensions of x should be 4, but received {} != 4".format(
                len(input_shape)
            )
        )
1290 1291 1292 1293

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1294 1295
            "Attr(data_format): %s." % str(data_format)
        )
1296

1297 1298 1299 1300 1301 1302 1303 1304
    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCHW' else [0, 3],
        training=training,
        mode="upscale_in_train",
        name=name,
    )
1305 1306 1307 1308 1309 1310 1311 1312


def dropout3d(x, p=0.5, training=True, data_format='NCDHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

1313
    See :ref:`api_paddle_nn_functional_dropout` for more details.
1314 1315 1316 1317

    Args:
        x (Tensor):  The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C].
                     The data type is float32 or float64.
1318 1319 1320 1321
        p (float, optional): Probability of setting units to zero. Default: 0.5.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from ``NCDHW`` or ``NDHWC``. When it is ``NCDHW`` , the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width]. Default: ``NCDHW`` .
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
1322 1323 1324 1325

    Returns:
        A Tensor representing the dropout3d, has same shape and data type with `x` .

1326

1327 1328
    Examples:
        .. code-block:: python
1329

1330
            import paddle
1331

1332 1333 1334 1335 1336 1337
            x = paddle.randn(shape=(2, 3, 4, 5, 6)).astype(paddle.float32)
            y_train = paddle.nn.functional.dropout3d(x)  #train
            y_test = paddle.nn.functional.dropout3d(x, training=False) #test
            print(x[0,0,:,:,:])
            print(y_train[0,0,:,:,:]) # may all 0
            print(y_test[0,0,:,:,:])
1338 1339 1340 1341 1342

    """

    input_shape = x.shape
    if len(input_shape) != 5:
1343 1344 1345 1346 1347
        raise ValueError(
            "dimensions of x should be 5, but received {} != 5".format(
                len(input_shape)
            )
        )
1348 1349 1350 1351

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1352 1353
            "Attr(data_format): %s." % str(data_format)
        )
1354

1355 1356 1357 1358 1359 1360 1361 1362
    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCDHW' else [0, 4],
        training=training,
        mode="upscale_in_train",
        name=name,
    )
1363 1364


1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
def alpha_dropout(x, p=0.5, training=True, name=None):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property.
    For an input with zero mean and unit standard deviation, the output of Alpha Dropout
    maintains the original mean and standard deviation of the input.
    Alpha Dropout fits well to SELU activate function by randomly setting activations to the negative saturation value.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
        p (float | int): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x`.

    Examples:
        .. code-block:: python
1383

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
            import paddle

            x = paddle.to_tensor([[-1, 1], [-1, 1]]).astype(paddle.float32)
            y_train = paddle.nn.functional.alpha_dropout(x, 0.5)
            y_test = paddle.nn.functional.alpha_dropout(x, 0.5, training=False)
            print(y_train)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.10721093, -0.77919382],
            #         [-0.10721093,  1.66559887]]) (randomly)
            print(y_test)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-1.,  1.],
            #         [-1.,  1.]])
1397 1398 1399 1400 1401 1402
    """
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a float or int")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")

Z
zhiboniu 已提交
1403
    if not in_dynamic_mode():
1404 1405 1406
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'alpha_dropout'
        )
1407 1408

    if training:
1409
        if p == 1:
1410 1411
            return paddle.scale(x, scale=0.0)
        # get transformation params
1412 1413 1414
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale
1415
        a = ((1 - p) * (1 + p * alpha_p**2)) ** -0.5
1416 1417 1418 1419 1420
        b = -a * alpha_p * p

        dtype = x.dtype
        input_shape = x.shape

1421 1422 1423 1424
        # get mask
        random_tensor = paddle.uniform(
            input_shape, dtype='float32', min=0.0, max=1.0
        )
Z
zhiboniu 已提交
1425
        p = full(shape=[1], fill_value=p, dtype='float32')
1426 1427 1428
        keep_mask = paddle.greater_equal(random_tensor, p)
        keep_mask = paddle.cast(keep_mask, dtype)
        drop_mask = paddle.subtract(
1429 1430
            full(shape=input_shape, fill_value=1.0, dtype=dtype), keep_mask
        )
1431

1432
        # apply mask
Z
zhiboniu 已提交
1433
        b = full(shape=[1], fill_value=b, dtype=dtype)
1434 1435 1436 1437
        y = paddle.add(
            paddle.multiply(x, keep_mask),
            paddle.scale(drop_mask, scale=alpha_p),
        )
1438
        res = paddle.add(paddle.scale(y, scale=a), b, name=name)
1439 1440 1441 1442 1443
        return res
    else:  # test
        return x


1444
def pad(x, pad, mode='constant', value=0.0, data_format="NCHW", name=None):
L
littletomatodonkey 已提交
1445
    """
1446 1447
    Pad tensor according to ``'pad'`` and ``'mode'``.
    If mode is ``'constant'`` and length of pad is twice as length of x dimension,
L
littletomatodonkey 已提交
1448
    then the padding will be started from the first dimension and moved back onto x
1449 1450
    according to ``'pad'`` and ``'value'``.
    If mode is ``'reflect'``, pad[0] and pad[1] must be no greater
L
littletomatodonkey 已提交
1451 1452 1453 1454
    than width-1. The height and depth dimension has the same condition.

    Parameters:
        x (Tensor): The input tensor with data type float32/double/int32/int64_t.
1455
        pad (Tensor|list[int]|tuple[int]): The padding size with data type int.
1456
            If mode is ``'constant'`` and length of pad is twice as length of x dimension, then x will
1457 1458
            be padded from the first  dimension to the last dimension.
            Else: 1. If input dimension is 3, then the pad has the form (pad_left,
1459 1460
            pad_right). 2. If the input dimension is 4, then the pad has the form (pad_left, pad_right,
            pad_top, pad_bottom). 3. If the input dimension is 5, then the pad has the form
L
littletomatodonkey 已提交
1461
            (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
1462
        mode (str, optional): Four modes: ``'constant'`` (default), ``'reflect'``, ``'replicate'``, ``'circular'``. Default is ``'constant'``.
1463 1464 1465 1466 1467 1468

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

1469 1470 1471 1472
        value (float, optional): The value to fill the padded areas in 'constant' mode . Default is :math:`0.0`.
        data_format (str, optional): An string from: ``'NCL'``, ``'NLC'``, ``'NHWC'``, ``'NCHW'``, ``'NCDHW'``, ``'NDHWC'``. Specify the data format of
           the input data. Default: ``'NCHW'``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: ``'None'``.
1473 1474

    Returns:
1475
        Tensor, a Tensor padded according to pad and mode and data type is same as input.
L
littletomatodonkey 已提交
1476

1477
    Example:
1478

L
littletomatodonkey 已提交
1479 1480 1481 1482 1483 1484
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]

            Case 0:
1485 1486 1487 1488 1489 1490 1491 1492 1493
                pad = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0., 0., 0.],
                          [1., 2., 3.],
                          [4., 5., 6.],
                          [0., 0., 0.]]]]]

            Case 1:
L
littletomatodonkey 已提交
1494 1495 1496 1497 1498 1499 1500 1501
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
                          [0. 0. 1. 2. 3. 0. 0.]
                          [0. 0. 4. 5. 6. 0. 0.]
                          [0. 0. 0. 0. 0. 0. 0.]]]]]

1502
            Case 2:
L
littletomatodonkey 已提交
1503 1504 1505 1506 1507 1508 1509
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'reflect'
                Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]
                          [6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]]]]]

1510
            Case 3:
L
littletomatodonkey 已提交
1511 1512 1513 1514 1515 1516 1517
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'replicate'
                Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
                          [1. 1. 1. 2. 3. 3. 3.]
                          [4. 4. 4. 5. 6. 6. 6.]
                          [4. 4. 4. 5. 6. 6. 6.]]]]]

1518
            Case 4:
L
littletomatodonkey 已提交
1519 1520 1521 1522 1523 1524 1525
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'circular'
                Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]
                          [5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]]]]]

1526
    Examples:
L
littletomatodonkey 已提交
1527
        .. code-block:: python
L
littletomatodonkey 已提交
1528

L
littletomatodonkey 已提交
1529 1530
            import paddle
            import paddle.nn.functional as F
1531

L
littletomatodonkey 已提交
1532 1533
            # example 1
            x_shape = (1, 1, 3)
1534
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1535
            y = F.pad(x, [0, 0, 0, 0, 2, 3], value=1, mode='constant', data_format="NCL")
L
littletomatodonkey 已提交
1536
            print(y)
L
littletomatodonkey 已提交
1537
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1538

L
littletomatodonkey 已提交
1539
            # example 2
1540
            x_shape = (1, 1, 3)
1541
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1542 1543 1544
            y = F.pad(x, [2, 3], value=1, mode='constant', data_format="NCL")
            print(y)
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1545

1546
            # example 3
L
littletomatodonkey 已提交
1547
            x_shape = (1, 1, 2, 3)
1548
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
L
littletomatodonkey 已提交
1549 1550
            y = F.pad(x, [1, 2, 1, 1], value=1, mode='circular')
            print(y)
L
littletomatodonkey 已提交
1551 1552 1553 1554 1555
            # [[[[6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]
            #    [6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]]]]
    """
1556 1557 1558 1559 1560 1561 1562 1563
    assert mode in [
        'reflect',
        'replicate',
        'constant',
        'circular',
    ], "mode should be one of constant, reflect, replicate, circular, but got {}.".format(
        mode
    )
L
littletomatodonkey 已提交
1564 1565

    data_format = data_format.upper()
1566 1567
    assert data_format in ["NCL", "NCHW", "NCDHW", "NLC", "NHWC", "NDHWC"], (
        "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], "
L
littletomatodonkey 已提交
1568
        "but got {}".format(data_format)
1569
    )
L
littletomatodonkey 已提交
1570 1571 1572

    x_dim = len(x.shape)

1573 1574 1575 1576 1577
    if (
        mode == "constant"
        and isinstance(pad, (list, tuple))
        and len(pad) == x_dim * 2
    ):
1578 1579
        paddings = pad
        pad_value = value
1580 1581

        if in_dygraph_mode():
1582
            out = _C_ops.pad(x, paddings, float(pad_value))
1583 1584
            return out

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            "pad",
        )
1599

1600 1601 1602 1603
        check_type(pad_value, 'pad_value', (float, int, Variable), 'pad')
        if isinstance(pad_value, int):
            pad_value = float(pad_value)

1604 1605 1606
        helper = LayerHelper('pad', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
1607 1608 1609 1610 1611 1612
        helper.append_op(
            type='pad',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'paddings': paddings, 'pad_value': pad_value},
        )
1613
        return out
L
littletomatodonkey 已提交
1614

1615
    assert x_dim in [
1616 1617 1618
        3,
        4,
        5,
1619 1620 1621 1622 1623 1624 1625
    ], "input tesor dimension must be in [3, 4, 5] but got {}".format(x_dim)

    supported_format_map = {
        3: ["NCL", "NLC"],
        4: ["NCHW", "NHWC"],
        5: ["NCDHW", "NDHWC"],
    }
1626 1627 1628 1629 1630
    assert (
        data_format in supported_format_map[x_dim]
    ), "input tensor dimension is {}, it's data format should be in {} but got {}".format(
        x_dim, supported_format_map[x_dim], data_format
    )
1631

L
littletomatodonkey 已提交
1632 1633 1634 1635 1636 1637
    unsqueezed_dim = []

    if isinstance(pad, Variable):
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
1638
                pad = concat([zeros((4,), dtype="int32"), pad], axis=0)
L
littletomatodonkey 已提交
1639
                unsqueezed_dim = [3, 4]
1640
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1641
            elif x_dim == 4:
1642
                pad = concat([pad, zeros((2,), dtype="int32")], axis=0)
L
littletomatodonkey 已提交
1643
                unsqueezed_dim = [2]
1644
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1645 1646 1647
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
1648
                pad = concat([zeros((4,), dtype="int32"), pad], axis=0)
L
littletomatodonkey 已提交
1649
                unsqueezed_dim = [2, 3]
1650
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1651
            elif x_dim == 4:
1652
                pad = concat([pad, zeros((2,), dtype="int32")], axis=0)
L
littletomatodonkey 已提交
1653
                unsqueezed_dim = [1]
1654
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1655
    else:
1656
        pad = list(pad)
L
littletomatodonkey 已提交
1657 1658 1659 1660 1661
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [3, 4]
1662
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1663 1664 1665
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [2]
1666
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1667 1668 1669 1670 1671
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [2, 3]
1672
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1673 1674 1675
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [1]
1676
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1677

J
Jiabin Yang 已提交
1678
    if in_dygraph_mode():
L
littletomatodonkey 已提交
1679
        if isinstance(pad, Variable):
J
Jiabin Yang 已提交
1680
            pad = pad.numpy().tolist()
1681
        out = _C_ops.pad3d(x, pad, mode, value, data_format)
J
Jiabin Yang 已提交
1682
    else:
1683 1684 1685 1686 1687
        attrs = {'mode': mode, 'value': value, 'data_format': data_format}
        inputs = {'X': [x]}
        if isinstance(pad, Variable):
            inputs['Paddings'] = [pad]
            attrs['paddings'] = []
1688
        else:
1689
            attrs['paddings'] = pad
L
littletomatodonkey 已提交
1690

1691
        helper = LayerHelper('pad3d', **locals())
L
littletomatodonkey 已提交
1692

1693 1694 1695 1696 1697
        dtype = helper.input_dtype(input_param_name='input')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='pad3d', inputs=inputs, outputs={"Out": out}, attrs=attrs
        )
L
littletomatodonkey 已提交
1698 1699

    if len(unsqueezed_dim) != 0:
1700
        out = squeeze(out, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1701 1702 1703 1704

    return out


1705 1706 1707 1708 1709 1710 1711 1712 1713
def zeropad2d(x, padding, data_format="NCHW", name=None):
    """
    Pads the input tensor boundaries with zero according to 'pad'.

    Args:
        x(Tensor): The input tensor with data type float16/float32/float64/int32/int64.
        padding(int | Tensor | List[int] | Tuple[int]): The padding size with data type int.
            The input dimension should be 4 and pad has the form (pad_left, pad_right,
            pad_top, pad_bottom).
1714
        data_format(str, optional): An string from: "NHWC", "NCHW". Specify the data format of
1715 1716 1717 1718
            the input data. Default: "NCHW".
        name(str, optional): The default value is None. Normally there is no need for user
            to set this property.

1719
    Returns:
1720
        Tensor, padded with 0 according to pad and data type is same as input.
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F

            x_shape = (1, 1, 2, 3)
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
            y = F.zeropad2d(x, [1, 2, 1, 1])
            # [[[[0. 0. 0. 0. 0. 0.]
            #    [0. 1. 2. 3. 0. 0.]
            #    [0. 4. 5. 6. 0. 0.]
            #    [0. 0. 0. 0. 0. 0.]]]]
    """

1738 1739 1740 1741 1742 1743 1744 1745
    return pad(
        x,
        pad=padding,
        mode='constant',
        value=0,
        data_format=data_format,
        name=name,
    )
1746 1747


Y
Yang Zhang 已提交
1748
def cosine_similarity(x1, x2, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1749
    """
Y
Yang Zhang 已提交
1750
    Compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1751 1752 1753 1754

    Parameters:
        x1 (Tensor): First input. float32/double.
        x2 (Tensor): Second input. float32/double.
1755 1756
        axis (int, optional): Dimension of vectors to compute cosine similarity. Default is 1.
        eps(float, optional): Small value to avoid division by zero. Default is 1e-8.
1757 1758

    Returns:
1759
        Tensor, a Tensor representing cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1760 1761 1762

    Examples:
        .. code-block:: text
1763

L
littletomatodonkey 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772
            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
Y
Yang Zhang 已提交
1773
                axis = 1
L
littletomatodonkey 已提交
1774 1775 1776 1777 1778
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1779

L
littletomatodonkey 已提交
1780 1781 1782
            import paddle
            import paddle.nn as nn

1783 1784 1785 1786
            paddle.seed(1)
            x1 = paddle.randn(shape=[2, 3])
            x2 = paddle.randn(shape=[2, 3])

Y
Yang Zhang 已提交
1787
            result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0)
L
littletomatodonkey 已提交
1788
            print(result)
1789
            # [0.97689527,  0.99996042, -0.55138415]
1790

L
littletomatodonkey 已提交
1791
    """
1792 1793 1794
    w12 = sum(paddle.multiply(x1, x2), axis=axis)
    w1 = sum(paddle.multiply(x1, x1), axis=axis)
    w2 = sum(paddle.multiply(x2, x2), axis=axis)
Y
Yang Zhang 已提交
1795
    n12 = sqrt(clip(w1 * w2, min=eps * eps))
L
littletomatodonkey 已提交
1796 1797
    cos_sim = w12 / n12
    return cos_sim
1798 1799 1800


def linear(x, weight, bias=None, name=None):
1801
    r"""
1802

1803 1804
    Fully-connected linear transformation operator. For each input :math:`X` ,
    the equation is:
1805 1806 1807

    .. math::

1808
        Out = XW + b
1809

1810
    where :math:`W` is the weight and :math:`b` is the bias.
1811

1812 1813 1814 1815
    If the weight is a 2-D tensor of shape :math:`[in\_features, out\_features]` ,
    input should be a multi-dimensional tensor of shape
    :math:`[batch\_size, *, in\_features]` , where :math:`*` means any number of
    additional dimensions. The linear operator multiplies input tensor with
1816
    weight and produces an output tensor of shape :math:`[batch\_size, *, out\_features]` ,
1817 1818
    If :math:`bias` is not None, the bias should be a 1-D tensor of shape
    :math:`[out\_features]` and will be added to the output.
1819

1820 1821 1822 1823 1824 1825 1826
    Parameters:
        x (Tensor): Input tensor. The data type should be float16, float32 or float64.
        weight (Tensor): Weight tensor. The data type should be float16, float32 or float64.
        bias (Tensor, optional): Bias tensor. The data type should be float16, float32 or float64.
                                 If it is set to None, no bias will be added to the output units.
        name (str, optional): Normally there is no need for user to set this parameter.
                              For detailed information, please refer to :ref:`api_guide_Name` .
1827 1828

    Returns:
1829 1830
        Tensor, the shape is :math:`[batch\_size, *, out\_features]` and the
        data type is the same with input :math:`x` .
1831 1832 1833

    Examples:
        .. code-block:: python
1834

1835
          import paddle
1836

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          weight = paddle.full(shape=[2, 4], fill_value="0.5", dtype="float32", name="weight")
          # weight: [[0.5 0.5 0.5 0.5]
          #          [0.5 0.5 0.5 0.5]]
          bias = paddle.ones(shape=[4], dtype="float32", name="bias")
          # bias: [1. 1. 1. 1.]
          y = paddle.nn.functional.linear(x, weight, bias)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
1850
    """
J
Jiabin Yang 已提交
1851
    if in_dygraph_mode():
1852
        # TODO(jiabin): using addmm for fast forward route
1853
        return _C_ops.linear(x, weight, bias)
1854
    else:
1855 1856
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype
J
Jiabin Yang 已提交
1857

1858 1859 1860 1861
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'linear'
        )
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear')
J
Jiabin Yang 已提交
1862

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
        inputs = {'X': [x], 'Y': [weight]}
        attrs = {'trans_x': False, 'trans_y': False}
        tmp = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='matmul_v2',
            inputs=inputs,
            outputs={'Out': tmp},
            attrs=attrs,
        )
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
1874
            helper.append_op(
1875 1876 1877 1878
                type='elementwise_add',
                inputs={'X': [tmp], 'Y': [bias]},
                outputs={'Out': [res]},
                attrs={'axis': len(x.shape) - 1},
1879
            )
1880 1881 1882
        else:
            res = tmp
        return res
1883 1884 1885


def label_smooth(label, prior_dist=None, epsilon=0.1, name=None):
1886
    r"""
1887
    Label smoothing is a mechanism to regularize the classifier layer and is called
1888 1889 1890 1891
    label-smoothing regularization (LSR).Label smoothing is proposed to encourage
    the model to be less confident, since optimizing the log-likelihood of the
    correct label directly may cause overfitting and reduce the ability of the
    model to adapt.
1892

1893
    Label smoothing replaces the ground-truth label :math:`y` with the weighted sum
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Parameters:
        label(Tensor): The input variable containing the label data. The
                        label data should use one-hot representation. It's
                        a multidimensional tensor with a shape of
                        :math:`[N_1, ..., Depth]`, where Depth is class number. The dtype can be "float32" and "float64".
        prior_dist(Tensor, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is
                        0.1.
        name(str, optional): The default value is None. Normally there is no need for user
                        to set this property. For more information, please refer to
                        :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor containing the smoothed labels.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1931 1932 1933 1934

            x = paddle.to_tensor([[[0, 1, 0],
                                [ 1,  0, 1]]], dtype="float32", stop_gradient=False)

1935
            output = paddle.nn.functional.label_smooth(x)
1936
            print(output)
1937 1938 1939
            # Tensor(shape=[1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[[0.03333334, 0.93333334, 0.03333334],
            #          [0.93333334, 0.03333334, 0.93333334]]])
1940
    """
1941
    if epsilon > 1.0 or epsilon < 0.0:
1942 1943
        raise ValueError("The value of epsilon must be between 0 and 1.")

1944
    if in_dygraph_mode():
1945
        return _C_ops.label_smooth(label, prior_dist, float(epsilon))
1946

1947
    elif paddle.in_dynamic_mode():
1948 1949 1950
        return _legacy_C_ops.label_smooth(
            label, prior_dist, 'epsilon', float(epsilon)
        )
1951

1952 1953 1954
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'label_smooth'
    )
1955 1956 1957 1958

    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_variable_for_type_inference(label.dtype)
1959 1960 1961 1962 1963 1964 1965 1966
    helper.append_op(
        type="label_smooth",
        inputs={"X": label, "PriorDist": prior_dist}
        if prior_dist
        else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)},
    )
1967
    return smooth_label
1968 1969


G
Guoxia Wang 已提交
1970
def class_center_sample(label, num_classes, num_samples, group=None):
1971 1972
    """
    Class center sample method is proposed from the paper PartialFC that only sample a subset of the class centers.
1973
    The process of sampling subset class centers is straightforward:
1974 1975 1976 1977

    1. First select the positive class centers;
    2. Then randomly sample negative class centers.

1978
    Specifically, given a label tensor, shape [batch_size], select all the positive class centers and randomly
1979 1980 1981 1982
    sample negative class centers, then remap the input label tensor using the sampled class centers.

    For more information, Partial FC: Training 10 Million Identities on a Single Machine
    arxiv: https://arxiv.org/abs/2010.05222
1983

1984
    .. hint::
1985
        If the number of the positive class centers is greater than the input num_samples, it keeps all the positive
1986
        class centers and the shape of sampled_class_center will be [num_positive_class_centers].
1987

1988 1989
        The API supports CPU, single GPU and multi GPU.

1990 1991 1992 1993
        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.

1994
    Args:
G
Guoxia Wang 已提交
1995 1996
        label (Tensor): 1-D tensor with shape [N], each label in [0, num_classes)
        num_classes (int): A positive integer to specify the number of classes at local rank.
1997
            Note that num_classes of each GPU can be different.
G
Guoxia Wang 已提交
1998
        num_samples (int): A positive integer to specify the number of class center to sample.
1999
        group (Group, optional): The group instance return by paddle.distributed.new_group
2000 2001
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
2002 2003 2004 2005 2006 2007 2008 2009

    Returns:
        Tuple of two ``Tensor`` : (remapped_label, sampled_class_center), remapped label using sampled class center,
        sampled class center from [0, num_classes).

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
2010
        :name: code-example1
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

        # CPU or single GPU
        import paddle
        num_classes = 20
        batch_size = 10
        num_samples = 6
        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes, num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        # the output is
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [11, 5 , 1 , 3 , 12, 2 , 15, 19, 18, 19])
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [4, 3, 0, 2, 5, 1, 6, 8, 7, 8])
        #Tensor(shape=[9], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [1 , 2 , 3 , 5 , 11, 12, 15, 18, 19])

    .. code-block:: python
G
Guoxia Wang 已提交
2033
        :name: code-example2
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064

        # required: distributed
        # Multi GPU, test_class_center_sample.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        batch_size = 10
        num_samples = 6
        rank_id = dist.get_rank()
        # num_classes of each GPU can be different, e.g num_classes_list = [10, 8]
        num_classes_list = [10, 10]
        num_classes = paddle.sum(paddle.to_tensor(num_classes_list))
        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes_list[rank_id], num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        #python -m paddle.distributed.launch --gpus=0,1 test_class_center_sample.py
        # rank 0 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [0, 2, 4, 8, 9, 3])
2065

2066 2067 2068 2069 2070 2071 2072 2073
        # rank 1 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[7], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [0, 1, 2, 3, 5, 7, 8])
    """
2074
    if not (group is False or group is None or hasattr(group, 'is_member')):
2075 2076
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
2077 2078 2079 2080
             (got group: {})'.format(
                group
            )
        )
2081 2082 2083
        return

    if hasattr(group, 'is_member') and not group.is_member():
2084 2085
        return

2086
    ring_id = 0
2087 2088
    rank = 0
    nranks = 1
2089
    if group is not False:
2090 2091 2092
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
2093 2094 2095 2096 2097
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2098
            nranks = parallel_env.world_size if group is None else group.nranks
2099 2100 2101

    if num_samples > num_classes:
        raise ValueError(
2102 2103 2104 2105
            'Expected num_samples less than or equal to {}, got num_samples {}'.format(
                num_classes, num_samples
            )
        )
2106

G
Guoxia Wang 已提交
2107 2108 2109
    label_size = 1
    for dim in list(label.shape):
        label_size *= dim
2110
    if label_size != -1 and label_size < 1:
2111 2112 2113 2114 2115 2116
        raise ValueError(
            'Expected label_size > 0 \
             (got label_size: {})'.format(
                label_size
            )
        )
G
Guoxia Wang 已提交
2117 2118 2119

    label_dims = len(list(label.shape))
    if label_dims != 1:
2120 2121 2122 2123 2124 2125
        raise ValueError(
            'Expected label_dims == 1 \
             (got label_dims: {})'.format(
                label_dims
            )
        )
G
Guoxia Wang 已提交
2126 2127

    seed = None
2128 2129 2130
    if (seed is None or seed == 0) and default_main_program().random_seed != 0:
        seed = default_main_program().random_seed

2131
    if in_dygraph_mode():
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
        return _C_ops.class_center_sample(
            label,
            num_classes,
            num_samples,
            ring_id,
            rank,
            nranks,
            seed is not None,
            seed if seed is not None else 0,
        )
2142
    elif paddle.in_dynamic_mode():
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
        (
            remapped_label,
            sampled_class_center,
        ) = _legacy_C_ops.class_center_sample(
            label,
            'num_classes',
            num_classes,
            'num_samples',
            num_samples,
            'ring_id',
            ring_id,
            'nranks',
            nranks,
            'rank',
            rank,
            'fix_seed',
            seed is not None,
            'seed',
            seed if seed is not None else 0,
        )
2163 2164
        return remapped_label, sampled_class_center

2165 2166 2167
    check_variable_and_dtype(
        label, 'label', ['int64', 'int32'], 'class_center_sample'
    )
2168 2169 2170
    op_type = 'class_center_sample'
    helper = LayerHelper(op_type, **locals())
    remapped_label = helper.create_variable_for_type_inference(
2171 2172
        dtype=label.dtype
    )
2173
    sampled_class_center = helper.create_variable_for_type_inference(
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
        dtype=label.dtype
    )
    helper.append_op(
        type=op_type,
        inputs={'Label': label},
        outputs={
            'RemappedLabel': remapped_label,
            'SampledLocalClassCenter': sampled_class_center,
        },
        attrs={
            'num_classes': num_classes,
            'num_samples': num_samples,
            'ring_id': ring_id,
            'nranks': nranks,
            'rank': rank,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
        },
    )
2193
    return remapped_label, sampled_class_center
X
xiaoting 已提交
2194 2195


2196 2197 2198
def fold(
    x, output_sizes, kernel_sizes, strides=1, paddings=0, dilations=1, name=None
):
X
xiaoting 已提交
2199
    r"""
2200

2201
    Combines an array of sliding local blocks into a large containing
2202 2203
    tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each
    combined value in the resulting large tensor by summing all values from all containing blocks.
X
xiaoting 已提交
2204 2205 2206 2207 2208 2209


    For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
    can be calculated as following.

    .. math::
2210

2211 2212 2213
        H_{out} &= output\_size[0] \\
        W_{out} &= output\_size[1] \\
        C_{out} &= \frac{C_{in}}{kernel\_sizes[0]\times kernel\_sizes[1]} \\
X
xiaoting 已提交
2214 2215 2216 2217

    Parameters:
        x(Tensor):                3-D Tensor, input tensor of format [N, C, L],
                                  data type can be float32 or float64
X
xiaoting 已提交
2218
        output_sizes(int|list|tuple):       The size of output size, should be [output_size_h, output_size_w]
X
xiaoting 已提交
2219
                                  or an interger o treated as [o, o].
X
xiaoting 已提交
2220
        kernel_sizes(int|list|tuple):   The size of convolution kernel, should be [k_h, k_w]
X
xiaoting 已提交
2221
                                  or an integer k treated as [k, k].
2222
        strides(int|list|tuple, optional):        The strides, should be [stride_h, stride_w]
X
xiaoting 已提交
2223 2224
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
2225
        paddings(int|list|tuple, optional):       The paddings of each dimension, should be
X
xiaoting 已提交
2226 2227 2228 2229 2230 2231
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
2232
        dilations(int|list|tuple, optional):      the dilations of convolution kernel, should be
X
xiaoting 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor formed by combining a group of sliding local blocks
        The output shape is [N, Cout, H, W] as decriabled above.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

X
xiaoting 已提交
2251 2252 2253
            x = paddle.randn([2,3*2*2,12])
            y = F.fold(x, output_sizes=[4, 5], kernel_sizes=2)
            # y.shape = [2,3,4,5]
X
xiaoting 已提交
2254 2255

    """
2256
    assert len(x.shape) == 3, "input should be the format of [N, C, L]"
X
xiaoting 已提交
2257

X
xiaoting 已提交
2258
    def _is_list_or_turple_(data):
2259
        return isinstance(data, list) or isinstance(data, tuple)
X
xiaoting 已提交
2260

X
xiaoting 已提交
2261 2262 2263
    if isinstance(output_sizes, int):
        output_sizes = [output_sizes, output_sizes]
    else:
2264 2265 2266
        assert _is_list_or_turple_(output_sizes) and (
            len(output_sizes) == 2
        ), "output_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2267 2268 2269 2270

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
2271 2272 2273
        assert _is_list_or_turple_(kernel_sizes) and (
            len(kernel_sizes) == 2
        ), "kernel_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2274 2275 2276 2277

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
2278 2279 2280
        assert _is_list_or_turple_(strides) and (
            len(strides) == 2
        ), "strides should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2281 2282 2283 2284

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
2285 2286 2287
        assert _is_list_or_turple_(dilations) and (
            len(dilations) == 2
        ), "dilations should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
2303 2304
            "of 2 or 4 integers"
        )
X
xiaoting 已提交
2305

X
xiaoting 已提交
2306
    if in_dygraph_mode():
2307 2308 2309
        out = _C_ops.fold(
            x, output_sizes, kernel_sizes, strides, paddings, dilations
        )
X
xiaoting 已提交
2310
    elif in_dynamic_mode():
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
        out = _legacy_C_ops.fold(
            x,
            "output_sizes",
            output_sizes,
            "kernel_sizes",
            kernel_sizes,
            "strides",
            strides,
            "paddings",
            paddings,
            "dilations",
            dilations,
        )
X
xiaoting 已提交
2324
    else:
2325 2326 2327
        helper = LayerHelper("fold", **locals())

        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fold')
X
xiaoting 已提交
2328
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
        helper.append_op(
            type="fold",
            inputs={"X": x},
            outputs={"Y": out},
            attrs={
                "output_sizes": output_sizes,
                "kernel_sizes": kernel_sizes,
                "strides": strides,
                "paddings": paddings,
                "dilations": dilations,
            },
        )
X
xiaoting 已提交
2341
    return out