reduce_sum_grad_kernel.cc 3.7 KB
Newer Older
C
chentianyu03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/phi/kernels/reduce_sum_grad_kernel.h"
C
chentianyu03 已提交
16 17 18 19 20

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
21 22
#include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/reduce_grad.h"
C
chentianyu03 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
namespace phi {

template <typename T, typename Context>
void ComputeFromInput(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& input2,
                      const std::vector<int64_t>& dims,
                      DenseTensor* x_grad) {
  auto* input0 = &x;
  auto* output = x_grad;
  dev_ctx.template Alloc<T>(output);

  const auto* input2_d = input2.data<T>();
  auto* output_d = output->data<T>();

  // handle reduce_all
  if (input2.dims().size() == 1 && input2.dims()[0] == 1) {
    for (int64_t i = 0; i < phi::product(input0->dims()); ++i) {
      output_d[i] = input2_d[0];
    }
    return;
  }

  // handle reduce by one dimension
  int reduce_dim_index = dims[0];
  if (reduce_dim_index < 0) {
    reduce_dim_index += input0->dims().size();
  }

  auto& input_dim = input0->dims();
  int64_t before_dim = 1;
  for (int i = 0; i < reduce_dim_index; ++i) {
    before_dim *= input_dim[i];
  }
  int64_t reduce_dim = input_dim[reduce_dim_index];
  int64_t after_dim = 1;
  for (int i = reduce_dim_index + 1; i < input_dim.size(); ++i) {
    after_dim *= input_dim[i];
  }
  for (int64_t i = 0; i < before_dim; ++i) {
    for (int64_t j = 0; j < reduce_dim; ++j) {
      for (int64_t k = 0; k < after_dim; ++k) {
        output_d[i * reduce_dim * after_dim + j * after_dim + k] =
            input2_d[i * after_dim + k];
      }
    }
  }
}

template <typename T, typename Context>
void ReduceSumGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& out_grad,
                         const std::vector<int64_t>& dims,
                         bool keep_dim,
                         bool reduce_all,
                         DenseTensor* x_grad) {
  if (dims.size() == 1) {
81 82 83
    if (out_grad.dtype() != x.dtype()) {
      DenseTensorMeta x_grad_meta(
          out_grad.dtype(), x_grad->dims(), x_grad->layout());
C
chentianyu03 已提交
84 85 86 87 88
      DenseTensor x_grad_tmp =
          phi::Empty<Context>(dev_ctx, std::move(x_grad_meta));

      ComputeFromInput<T, Context>(dev_ctx, x, out_grad, dims, &x_grad_tmp);

89
      phi::CastKernel<T>(dev_ctx, x_grad_tmp, x.dtype(), x_grad);
C
chentianyu03 已提交
90 91 92 93 94 95

    } else {
      ComputeFromInput<T, Context>(dev_ctx, x, out_grad, dims, x_grad);
    }
  }

96 97
  ReduceGradKernel<Context, T, funcs::SumGradFunctor, true>(
      dev_ctx, x, paddle::none, out_grad, dims, keep_dim, reduce_all, x_grad);
98 99
}

C
chentianyu03 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113
}  // namespace phi

PD_REGISTER_KERNEL(sum_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::ReduceSumGradKernel,
                   bool,
                   float,
                   double,
                   phi::dtype::float16,
                   int,
                   int64_t,
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}