layer.py 9.4 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""
Y
Yu Yang 已提交
15 16 17
`paddle.v2.layer` is a part of model config packages in paddle.v2. In API v2,
we want to make Paddle a plain Python package. The model config package defined
the way how to configure a neural network topology in Paddle Python code.
18

Y
Yu Yang 已提交
19
The primary usage shows below.
20

Y
Yu Yang 已提交
21
..  code-block:: python
22

Y
Yu Yang 已提交
23
    import paddle.v2 as paddle
24

Y
Yu Yang 已提交
25 26 27 28
    img = paddle.layer.data(name='img', type=paddle.data_type.dense_vector(784))
    hidden = paddle.layer.fc(input=img, size=200)
    prediction = paddle.layer.fc(input=hidden, size=10,
                                 act=paddle.activation.Softmax())
29

Y
Yu Yang 已提交
30
    # use prediction instance where needed.
Y
Yu Yang 已提交
31
    parameters = paddle.parameters.create(cost)
32
"""
Q
qiaolongfei 已提交
33

Q
qiaolongfei 已提交
34
import collections
X
xuwei06 已提交
35
import copy
X
xuwei06 已提交
36
import re
X
xuwei06 已提交
37 38 39
import paddle.trainer_config_helpers.layers as v1_layers
import paddle.trainer.config_parser as cp
from paddle.proto.ModelConfig_pb2 import ModelConfig, SubModelConfig
X
xuwei06 已提交
40 41
from config_base import __convert_to_v2__
import config_base
Q
qiaolongfei 已提交
42

X
xuwei06 已提交
43
__all__ = ['data', 'parse_network']
Q
qiaolongfei 已提交
44

X
xuwei06 已提交
45

X
xuwei06 已提交
46 47 48 49
def __need_to_keep__(name):
    if name in ['StaticInput', 'LayerType', 'layer_support']:
        return False
    return True
Q
qiaolongfei 已提交
50 51


X
xuwei06 已提交
52 53
def __need_to_wrap__(name):
    return name not in ['AggregateLevel', 'ExpandLevel']
Q
qiaolongfei 已提交
54 55


X
xuwei06 已提交
56 57
def __convert_name__(inname):
    if inname == 'maxid_layer':
Y
Yu Yang 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70
        return 'max_id'
    elif inname.endswith('memory') or inname.endswith(
            '_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
        return inname
    elif inname in [
            'cross_entropy', 'multi_binary_label_cross_entropy',
            'cross_entropy_with_selfnorm'
    ]:
        return inname + "_cost"
    elif inname.endswith('_cost'):
        return inname
    elif inname.endswith("_layer"):
        return inname[:-len("_layer")]
X
xuwei06 已提交
71 72
    else:
        return inname
Y
Yu Yang 已提交
73 74


X
xuwei06 已提交
75 76 77 78 79 80
for name in v1_layers.__all__:
    obj = getattr(v1_layers, name)
    if not __need_to_keep__(name):
        continue
    new_name = __convert_name__(name)
    if callable(obj) and __need_to_wrap__(name):
X
xuwei06 已提交
81
        globals()[new_name] = __convert_to_v2__(obj, new_name, __name__)
Q
qiaolongfei 已提交
82
    else:
X
xuwei06 已提交
83 84 85 86 87 88 89 90
        globals()[new_name] = obj
    __all__.append(new_name)


def __data_layer__(name, type, **kwargs):
    l = v1_layers.data_layer(name, type.dim, **kwargs)
    l.data_type = type
    return l
Q
qiaolongfei 已提交
91

X
xuwei06 已提交
92

X
xuwei06 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
def __map_data_docstr__(doc):
    doc = re.sub(r'(data = [^\)]+)\).*',
                 "data = paddle.layer.data(name=\"input\", "
                 "type=paddle.data_type.dense_vector(1000))", doc)

    doc = re.sub(r':param size:.*', ':param type: Data type of this data layer',
                 doc)
    doc = re.sub(r':type size:.*', ":type size: paddle.v2.data_type.InputType",
                 doc)
    return doc


__data_layer__.__doc__ = __map_data_docstr__(v1_layers.data_layer.__doc__)
Q
qiaolongfei 已提交
106

X
xuwei06 已提交
107
data = __convert_to_v2__(__data_layer__, 'name', __name__)
Q
qiaolongfei 已提交
108 109


X
xuwei06 已提交
110 111 112
def __get_used_layers__(output_layers, extra_layers=None):
    layer_names = set()
    parents = {}
X
xuwei06 已提交
113

X
xuwei06 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    def add_parent(child, parent):
        if child in parents:
            parents[child].append(parent)
        else:
            parents[child] = [parent]

    def add_additional_parents():
        for sub_model in cp.g_config.model_config.sub_models:
            if sub_model.name == 'root':
                continue
            for link in sub_model.in_links:
                add_parent(link.link_name, link.layer_name)
                add_parent(sub_model.name, link.layer_name)
            for link in sub_model.out_links:
                add_parent(link.link_name, link.layer_name)
                add_parent(link.link_name, sub_model.name)
            for mem in sub_model.memories:
                if mem.boot_layer_name:
                    add_parent(mem.layer_name, mem.boot_layer_name)
                add_parent(mem.link_name, mem.layer_name)

    def dfs_travel(layer_name):
        if layer_name in layer_names:
            return
        layer_names.add(layer_name)
        layer = cp.g_layer_map[layer_name]

        for inp in layer.inputs:
            dfs_travel(inp.input_layer_name)
        if layer.name in parents:
            for p in parents[layer.name]:
                dfs_travel(p)

    add_additional_parents()

    for layer in output_layers:
        dfs_travel(layer.full_name)

    return layer_names


155
def __get_used_parameters__(layer_names, sub_models):
X
xuwei06 已提交
156 157 158 159 160 161 162 163
    parameter_names = set()
    for name in layer_names:
        l = cp.g_layer_map[name]
        for inp in l.inputs:
            if inp.input_parameter_name:
                parameter_names.add(inp.input_parameter_name)
        if l.bias_parameter_name:
            parameter_names.add(l.bias_parameter_name)
164 165 166 167 168 169

    for sub_model in sub_models:
        for mem in sub_model.memories:
            if mem.HasField("boot_bias_parameter_name"):
                parameter_names.add(mem.boot_bias_parameter_name)

X
xuwei06 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    return parameter_names


def __get_used_submodels__(layer_names):
    submodel_names = set()
    for submodel in cp.g_config.model_config.sub_models:
        if submodel.name in layer_names:
            submodel_names.add(submodel.name)
    return submodel_names


def __get_used_evaluators__(layer_names):
    evaluator_names = set()
    for e in cp.g_config.model_config.evaluators:
        used = True
        for name in e.input_layers:
            if name not in layer_names:
                used = False
                break
        if used:
            evaluator_names.add(e.name)
    return evaluator_names


X
xuwei06 已提交
194 195
def __trim_submodel__(old_submodel, layer_names, input_layer_names,
                      output_layer_names, evaluator_names):
X
xuwei06 已提交
196 197 198

    submodel = SubModelConfig()
    submodel.name = old_submodel.name
X
xuwei06 已提交
199 200 201 202 203 204 205 206
    submodel.layer_names.extend(
        filter(lambda x: x in layer_names, old_submodel.layer_names))
    submodel.input_layer_names.extend(
        filter(lambda x: x in input_layer_names, submodel.layer_names))
    submodel.output_layer_names.extend(
        filter(lambda x: x in output_layer_names, submodel.layer_names))
    submodel.evaluator_names.extend(
        filter(lambda x: x in evaluator_names, old_submodel.evaluator_names))
X
xuwei06 已提交
207 208 209 210

    submodel.is_recurrent_layer_group = old_submodel.is_recurrent_layer_group
    submodel.reversed = old_submodel.reversed

X
xuwei06 已提交
211 212
    submodel.memories.extend(
        filter(lambda x: x.link_name in layer_names, old_submodel.memories))
X
xuwei06 已提交
213 214 215 216 217 218 219 220 221 222
    target_inlinkid = (old_submodel.target_inlinkid
                       if old_submodel.HasField('target_inlinkid') else -1)
    in_links = []
    for i, link in enumerate(old_submodel.in_links):
        if link.link_name in layer_names or i == target_inlinkid:
            in_links.append(link)
            if i == target_inlinkid:
                target_inlinkid = len(in_links) - 1
    submodel.in_links.extend(in_links)

X
xuwei06 已提交
223 224
    submodel.out_links.extend(
        filter(lambda x: x.link_name in layer_names, old_submodel.out_links))
X
xuwei06 已提交
225 226 227 228 229 230
    if old_submodel.HasField('generator'):
        submodel.generator.CopyFrom(old_submodel.generator)

    if old_submodel.HasField('target_inlinkid'):
        submodel.target_inlinkid = target_inlinkid
    return submodel
Q
qiaolongfei 已提交
231 232


X
xuwei06 已提交
233 234 235 236 237 238 239 240
def parse_network(output_layers, extra_layers=None):
    if not isinstance(output_layers, collections.Sequence):
        output_layers = [output_layers]
    if extra_layers is not None and not isinstance(extra_layers,
                                                   collections.Sequence):
        extra_layers = [extra_layers]
    else:
        extra_layers = []
Q
qiaolongfei 已提交
241

X
xuwei06 已提交
242 243 244 245 246 247
    layer_names = __get_used_layers__(output_layers + extra_layers)
    submodel_names = __get_used_submodels__(layer_names)
    submodel_names.add('root')
    evaluator_names = __get_used_evaluators__(layer_names)
    input_layer_names = set()
    output_layer_names = set()
Q
qiaolongfei 已提交
248

X
xuwei06 已提交
249 250 251 252 253 254 255 256 257
    model_config = ModelConfig()
    model_config.type = cp.g_config.model_config.type
    for l in cp.g_config.model_config.layers:
        if l.name not in layer_names:
            continue
        model_config.layers.extend([l])
        if l.type == 'data':
            model_config.input_layer_names.append(l.name)
            input_layer_names.add(l.name)
Q
qiaolongfei 已提交
258

X
xuwei06 已提交
259 260 261
    for layer in output_layers:
        model_config.output_layer_names.append(layer.full_name)
        output_layer_names.add(layer.full_name)
Q
qiaolongfei 已提交
262

X
xuwei06 已提交
263 264 265
    for e in cp.g_config.model_config.evaluators:
        if e.name in evaluator_names:
            model_config.evaluators.extend([e])
Q
qiaolongfei 已提交
266

X
xuwei06 已提交
267 268
    for s in cp.g_config.model_config.sub_models:
        if s.name in submodel_names:
X
xuwei06 已提交
269 270
            s = __trim_submodel__(s, layer_names, input_layer_names,
                                  output_layer_names, evaluator_names)
X
xuwei06 已提交
271
            model_config.sub_models.extend([s])
L
Luo Tao 已提交
272

273 274 275 276 277 278 279
    parameter_names = __get_used_parameters__(layer_names,
                                              model_config.sub_models)

    for p in cp.g_config.model_config.parameters:
        if p.name in parameter_names:
            model_config.parameters.extend([p])

X
xuwei06 已提交
280
    return model_config
Y
Yu Yang 已提交
281 282


X
xuwei06 已提交
283
def get_layer(name):
X
xuwei06 已提交
284
    return config_base.__layer_map__.get(name)
Y
Yu Yang 已提交
285 286


X
xuwei06 已提交
287
cp.begin_parse()