strided_slice_op_mlu.cc 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#include "paddle/fluid/operators/slice_op.h"
#include "paddle/phi/kernels/funcs/strided_slice.h"

namespace paddle {
namespace operators {

static void ProcessStridedSliceParams(
    const std::vector<int>& axes,
    const DDim& input_dims,
    const std::vector<int64_t>& starts,
    const std::vector<int64_t>& ends,
    const std::vector<int64_t>& strides,
    const std::vector<int>& infer_flags,
    const std::vector<int>& decrease_axis,
    std::vector<int>* starts_indices_vector,
    std::vector<int>* ends_indices_vector,
    std::vector<int>* strides_indices_vector) {
  for (size_t axis = 0; axis < axes.size(); axis++) {
    int64_t start = starts[axis];
    int64_t end = ends[axis];
    int64_t stride = strides[axis];

    int axis_index = axes[axis];
    int64_t dim_size = input_dims[axis_index];

    bool decrease_axis_affect = false;
    if (start == -1 && end == 0 && infer_flags[axis] == -1) {
      auto ret =
          std::find(decrease_axis.begin(), decrease_axis.end(), axis_index);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }

    if (stride < 0) {
      if (start < 0) {
        start = std::max(start, -dim_size);
      } else {
        start = std::min(start, dim_size - 1) - dim_size;
      }
      if (end < 0) {
        end = std::max(end, -dim_size - 1);
      } else {
        end = end - dim_size;
      }
    } else {
      if (start < 0) {
        start = std::max(start, -dim_size) + dim_size;
      } else {
        start = std::min(start, dim_size - 1);
      }
      if (end < 0) {
        end = end + dim_size;
      } else {
        end = std::min(end, dim_size);
      }
    }

    if (decrease_axis_affect) {
      if (stride < 0) {
        end = start - 1;
      } else {
        end = start + 1;
      }
    }

    (*starts_indices_vector)[axis_index] = static_cast<int>(start);
    (*ends_indices_vector)[axis_index] = static_cast<int>(end);
    (*strides_indices_vector)[axis_index] = static_cast<int>(stride);
  }
}

template <typename T>
class StridedSliceMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const Variable* input_var = ctx.InputVar("Input");
    bool is_tensor_array = input_var->IsType<LoDTensorArray>();
    PADDLE_ENFORCE_EQ(is_tensor_array,
                      false,
                      platform::errors::InvalidArgument(
                          "Tensor array as input is not supported."));
98
    int rank = ctx.Input<phi::DenseTensor>("Input")->dims().size();
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    switch (rank) {
      case 1:
        StridedSliceCompute<1>(ctx);
        break;
      case 2:
        StridedSliceCompute<2>(ctx);
        break;
      case 3:
        StridedSliceCompute<3>(ctx);
        break;
      case 4:
        StridedSliceCompute<4>(ctx);
        break;
      case 5:
        StridedSliceCompute<5>(ctx);
        break;
      case 6:
        StridedSliceCompute<6>(ctx);
        break;
      case 7:
        StridedSliceCompute<7>(ctx);
        break;
      case 8:
        StridedSliceCompute<8>(ctx);
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The rank of input is supported up to 8."));
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceCompute(const framework::ExecutionContext& ctx) const {
    auto place = ctx.GetPlace();

136 137
    auto in = ctx.Input<phi::DenseTensor>("Input");
    auto out = ctx.Output<phi::DenseTensor>("Out");
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    auto in_dims = in->dims();

    // list<int>
    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");
    auto strides_int = ctx.Attr<std::vector<int>>("strides");

    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());
    std::vector<int64_t> strides(strides_int.begin(), strides_int.end());

    auto axes = ctx.Attr<std::vector<int>>("axes");
    auto infer_flags = ctx.Attr<std::vector<int>>("infer_flags");
    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");

    // vector<Tensor<int32>>
    auto list_new_starts_tensor =
155
        ctx.MultiInput<phi::DenseTensor>("StartsTensorList");
156
    auto list_new_ends_tensor =
157
        ctx.MultiInput<phi::DenseTensor>("EndsTensorList");
158
    auto list_new_strides_tensor =
159
        ctx.MultiInput<phi::DenseTensor>("StridesTensorList");
160 161 162 163 164

    // Tensor<int32>
    if (list_new_starts_tensor.size() > 0) {
      starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
    } else if (ctx.HasInput("StartsTensor")) {
165
      auto* starts_tensor = ctx.Input<phi::DenseTensor>("StartsTensor");
166 167 168 169 170 171
      starts = GetDataFromTensor<int64_t>(starts_tensor);
    }

    if (list_new_ends_tensor.size() > 0) {
      ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
    } else if (ctx.HasInput("EndsTensor")) {
172
      auto* ends_tensor = ctx.Input<phi::DenseTensor>("EndsTensor");
173 174 175 176 177 178
      ends = GetDataFromTensor<int64_t>(ends_tensor);
    }

    if (list_new_strides_tensor.size() > 0) {
      strides = GetDataFromTensorList<int64_t>(list_new_strides_tensor);
    } else if (ctx.HasInput("StridesTensor")) {
179
      auto* strides_tensor = ctx.Input<phi::DenseTensor>("StridesTensor");
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
      strides = GetDataFromTensor<int64_t>(strides_tensor);
    }

    // out dims calculation
    std::vector<int64_t> out_dims_vector(in_dims.size(), -1);
    phi::funcs::StridedSliceOutDims(starts,
                                    ends,
                                    strides,
                                    axes,
                                    infer_flags,
                                    in_dims,
                                    decrease_axis,
                                    out_dims_vector.data(),
                                    axes.size(),
                                    false);
    framework::DDim out_dims(phi::make_ddim(out_dims_vector));

    // construct the starts_indices, ends_indices and strides_indices tensor for
    // calling StridedSlice op
    std::vector<int> starts_indices_vector(D, 0);
    std::vector<int> ends_indices_vector(out_dims_vector.begin(),
                                         out_dims_vector.end());
    std::vector<int> strides_indices_vector(D, 1);

    ProcessStridedSliceParams(axes,
                              in_dims,
                              starts,
                              ends,
                              strides,
                              infer_flags,
                              decrease_axis,
                              &starts_indices_vector,
                              &ends_indices_vector,
                              &strides_indices_vector);

    auto out_dims_origin = out_dims;
    if (decrease_axis.size() > 0) {
      std::vector<int64_t> new_out_shape;
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
        PADDLE_ENFORCE_EQ(
            out_dims[decrease_axis[i]],
            1,
            platform::errors::InvalidArgument(
                "the size of decrease dimension should be 1, but received %d.",
                out_dims[decrease_axis[i]]));
        out_dims_origin[decrease_axis[i]] = 0;
      }

      for (int i = 0; i < out_dims_origin.size(); ++i) {
        if (out_dims_origin[i] != 0) {
          new_out_shape.push_back(out_dims_origin[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }
      out_dims_origin = phi::make_ddim(new_out_shape);
    }

    out->Resize(out_dims_origin);
    out->mutable_data<T>(place);

    MLUCnnlTensorDesc in_desc(*in);
    MLUCnnlTensorDesc out_desc(
        out_dims_vector.size(), out_dims_vector.data(), ToCnnlDataType<T>());
    MLUCnnl::StridedSlice(ctx,
                          starts_indices_vector.data(),
                          ends_indices_vector.data(),
                          strides_indices_vector.data(),
                          in_desc.get(),
                          GetBasePtr(in),
                          out_desc.get(),
                          GetBasePtr(out));
  }
};

template <typename T>
class StridedSliceGradMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const Variable* input_var = ctx.InputVar("Input");
    bool is_tensor_array = input_var->IsType<LoDTensorArray>();
    PADDLE_ENFORCE_EQ(is_tensor_array,
                      false,
                      platform::errors::InvalidArgument(
                          "Tensor array as input is not supported."));
266
    int rank = ctx.Input<phi::DenseTensor>("Input")->dims().size();
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

    switch (rank) {
      case 1:
        StridedSliceGradCompute<1>(ctx);
        break;
      case 2:
        StridedSliceGradCompute<2>(ctx);
        break;
      case 3:
        StridedSliceGradCompute<3>(ctx);
        break;
      case 4:
        StridedSliceGradCompute<4>(ctx);
        break;
      case 5:
        StridedSliceGradCompute<5>(ctx);
        break;
      case 6:
        StridedSliceGradCompute<6>(ctx);
        break;
      case 7:
        StridedSliceGradCompute<7>(ctx);
        break;
      case 8:
        StridedSliceGradCompute<8>(ctx);
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The rank of input is supported up to 8."));
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceGradCompute(const framework::ExecutionContext& ctx) const {
    auto place = ctx.GetPlace();

305
    auto* input = ctx.Input<phi::DenseTensor>("Input");
306
    auto input_dims = input->dims();
307 308
    auto* dout = ctx.Input<phi::DenseTensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<phi::DenseTensor>(framework::GradVarName("Input"));
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    dx->mutable_data<T>(input_dims, place);

    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");
    auto strides_int = ctx.Attr<std::vector<int>>("strides");

    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());
    std::vector<int64_t> strides(strides_int.begin(), strides_int.end());

    auto axes = ctx.Attr<std::vector<int>>("axes");
    auto infer_flags = ctx.Attr<std::vector<int>>("infer_flags");
    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");

    auto list_new_ends_tensor =
324
        ctx.MultiInput<phi::DenseTensor>("EndsTensorList");
325
    auto list_new_starts_tensor =
326
        ctx.MultiInput<phi::DenseTensor>("StartsTensorList");
327
    auto list_new_strides_tensor =
328
        ctx.MultiInput<phi::DenseTensor>("StridesTensorList");
329 330 331 332

    if (list_new_starts_tensor.size() > 0) {
      starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
    } else if (ctx.HasInput("StartsTensor")) {
333
      auto* starts_tensor = ctx.Input<phi::DenseTensor>("StartsTensor");
334 335 336 337 338 339
      starts = GetDataFromTensor<int64_t>(starts_tensor);
    }

    if (list_new_ends_tensor.size() > 0) {
      ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
    } else if (ctx.HasInput("EndsTensor")) {
340
      auto* ends_tensor = ctx.Input<phi::DenseTensor>("EndsTensor");
341 342 343 344 345 346
      ends = GetDataFromTensor<int64_t>(ends_tensor);
    }

    if (list_new_strides_tensor.size() > 0) {
      strides = GetDataFromTensorList<int64_t>(list_new_strides_tensor);
    } else if (ctx.HasInput("StridesTensor")) {
347
      auto* strides_tensor = ctx.Input<phi::DenseTensor>("StridesTensor");
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
      strides = GetDataFromTensor<int64_t>(strides_tensor);
    }

    std::vector<int64_t> out_dims_vector(input_dims.size(), -1);
    phi::funcs::StridedSliceOutDims(starts,
                                    ends,
                                    strides,
                                    axes,
                                    infer_flags,
                                    input_dims,
                                    decrease_axis,
                                    out_dims_vector.data(),
                                    axes.size(),
                                    false);

    std::vector<int> starts_indices_vector(D, 0);
    std::vector<int> ends_indices_vector(out_dims_vector.begin(),
                                         out_dims_vector.end());
    std::vector<int> strides_indices_vector(D, 1);

    ProcessStridedSliceParams(axes,
                              input_dims,
                              starts,
                              ends,
                              strides,
                              infer_flags,
                              decrease_axis,
                              &starts_indices_vector,
                              &ends_indices_vector,
                              &strides_indices_vector);

    MLUCnnlTensorDesc dout_desc(
        out_dims_vector.size(), out_dims_vector.data(), ToCnnlDataType<T>());
    MLUCnnlTensorDesc dx_desc(*input);
    MLUCnnl::StridedSliceGrad(ctx,
                              starts_indices_vector.data(),
                              ends_indices_vector.data(),
                              strides_indices_vector.data(),
                              dout_desc.get(),
                              GetBasePtr(dout),
                              dx_desc.get(),
                              GetBasePtr(dx));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_MLU_KERNEL(strided_slice,
                       ops::StridedSliceMLUKernel<plat::float16>,
                       ops::StridedSliceMLUKernel<bool>,
                       ops::StridedSliceMLUKernel<int>,
                       ops::StridedSliceMLUKernel<int64_t>,
                       ops::StridedSliceMLUKernel<float>);

REGISTER_OP_MLU_KERNEL(strided_slice_grad,
                       ops::StridedSliceGradMLUKernel<plat::float16>,
                       ops::StridedSliceGradMLUKernel<float>,
                       ops::StridedSliceGradMLUKernel<bool>,
                       ops::StridedSliceGradMLUKernel<int>,
                       ops::StridedSliceGradMLUKernel<int64_t>);