dense_tensor.h 11.0 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/core/allocator.h"
18
#include "paddle/phi/core/storage_properties.h"
19 20 21
#include "paddle/phi/core/stream.h"
#include "paddle/phi/core/tensor_base.h"
#include "paddle/phi/core/tensor_meta.h"
22

23
/* @jim19930609: Move to MKLDNN_Tensor in the future
24
 */
25
#ifdef PADDLE_WITH_MKLDNN
L
Leo Chen 已提交
26
#include "dnnl.hpp"  // NOLINT
27 28
#endif

29
namespace phi {
30

31
class DenseTensorUtils;
32

33
/// \brief The Dense tensor stores values in a contiguous sequential block
34 35 36 37 38 39 40 41 42 43
/// of memory where all values are represented. Tensors or multi-dimensional
/// arrays are used in math operators.
/// During the entire life cycle of a DenseTensor, its device type and key
/// metadata are set unchanged.
class DenseTensor : public TensorBase,
                    public TypeInfoTraits<TensorBase, DenseTensor> {
 public:
  /// \brief Construct a dense tensor and allocate space.
  /// \param a The allocator used to allocate space.
  /// \param meta The meta data of dense tensor.
44
  DenseTensor(Allocator* a, const DenseTensorMeta& meta);
45 46 47 48

  /// \brief Construct a dense tensor and allocate space.
  /// \param a The allocator used to allocate space.
  /// \param meta The meta data of dense tensor.
49
  DenseTensor(Allocator* a, DenseTensorMeta&& meta);
50

51
  DenseTensor(const std::shared_ptr<phi::Allocation>& holder,
52
              const DenseTensorMeta& meta);
53 54 55 56

  /// \brief Because dense tensor is a kind of container, we give a default
  /// constructor to use for stl container. But the dense tensor created with
  /// the default constructor is not practical.
57
  // DenseTensor() = default;
58 59 60 61 62

  /// \brief Because dense tensor is a resource handle, we provide a default
  /// move constructor to support move semantics.
  DenseTensor(DenseTensor&& other) = default;

63 64
  /// \brief DenseTensor shallow copy constructor.
  DenseTensor(const DenseTensor& other);
65

66 67 68
  /// \brief DenseTensor shallow copy assignment.
  DenseTensor& operator=(const DenseTensor& other);

69 70
  DenseTensor& operator=(DenseTensor&& other);

71 72
  DenseTensor();

73 74 75 76 77 78 79 80 81 82
  /// \brief Destroy the tensor object and release exclusive resources.
  virtual ~DenseTensor() = default;

 public:
  /// \brief Returns the name of the class for type traits.
  /// \return The name of the class.
  static const char* name() { return "DenseTensor"; }

  /// \brief Returns the number of elements contained in tensor.
  /// \return The number of elements contained in tensor.
83
  int64_t numel() const override;
84 85 86

  /// \brief Returns the dims of the tensor.
  /// \return The dims of the tensor.
87
  const DDim& dims() const noexcept override { return meta_.dims; }
88 89 90

  /// \brief Returns the lod of the tensor.
  /// \return The lod of the tensor.
91
  const LoD& lod() const noexcept { return meta_.lod; }
92 93 94

  /// \brief Returns the data type of the tensor.
  /// \return The data type of the tensor.
95
  DataType dtype() const noexcept override { return meta_.dtype; }
96 97 98

  /// \brief Returns the data layout of the tensor.
  /// \return The data layout of the tensor.
99
  DataLayout layout() const noexcept override { return meta_.layout; }
100 101 102

  /// \brief Returns the data place of the tensor.
  /// \return The data place of the tensor.
103
  const Place& place() const override;
104 105 106 107 108

  /// \brief Returns the meta information of the tensor.
  /// \return The meta information of the tensor.
  const DenseTensorMeta& meta() const noexcept { return meta_; }

109 110 111 112 113
  /// \brief Sets the meta information of the tensor. Only when the original
  /// attribute of Tensor is incomplete, can it be reset.
  /// \param meta The meta information of the tensor.
  void set_meta(DenseTensorMeta&& meta);

114 115
  void set_meta(const DenseTensorMeta& meta);

116 117
  /// \brief Test whether the metadata is valid.
  /// \return Whether the metadata is valid.
118
  bool valid() const noexcept override { return meta_.valid(); }
119

120 121
  /// \brief Test whether the allocation is allocated.
  /// return Whether the allocation is allocated.
122
  bool initialized() const override { return holder_ && holder_->ptr(); }
123

124 125 126 127 128 129
  /// \brief Allocate memory with requested size from allocator.
  /// \return The mutable data pointer value of type T.
  void* AllocateFrom(Allocator* allocator,
                     DataType dtype,
                     size_t requested_size = 0) override;

130 131
  /// \brief Check if allocation is shared with other objects.
  /// \return Whether the allocation is shared with other objects.
132 133
  bool IsSharedWith(const DenseTensor& b) const;

134
  /// \brief Change the shape information in the metadata. If the new size is
135
  /// larger than the original value, the allocation area will be reallocated.
136
  /// \param dims The new dims of the dense tensor.
137
  /// \param lod The new lod of the dense tensor.
138
  // void Resize(const DDim& dims);
139 140 141
  void ResizeAndAllocate(const DDim& dims);

  DenseTensor& Resize(const DDim& dims);
142 143 144 145

  /// \brief Change the lod information in the metadata.
  /// \param lod The new lod of the dense tensor.
  void ResetLoD(const LoD& lod);
146

147 148
  /// \brief Returns the actual allocation size occupied by tensor, may be
  /// larger
149
  /// than its shape dims.
150
  /// \return The actual allocation size occupied by tensor.
151
  size_t capacity() const { return holder_->size(); }
152 153 154 155 156 157 158 159 160 161

  /// \brief Get the const data pointer value of type T.
  /// \return The const data pointer value of type T.
  template <typename T>
  const T* data() const;

  /// \brief Get the const data pointer value of raw type.
  /// \return The const data pointer value of raw type.
  const void* data() const;

162 163 164 165 166
  template <typename T>
  T* data();

  void* data();

167 168 169 170 171 172 173 174 175 176
  /// \brief Returns the storage_properties of the tensor.
  /// \return The storage_properties of the tensor.
  template <typename DeviceT>
  const DeviceT& storage_properties() const;

  /// \brief Sets the storage_properties of the tensor.
  /// \param storage_properties The storage_properties of the tensor.
  void set_storage_properties(
      std::unique_ptr<StorageProperties>&& storage_properties);

177
 private:
178
  friend class DenseTensorUtils;
179

180
 protected:
181
  DenseTensorMeta meta_;
182
  std::shared_ptr<phi::Allocation> holder_;
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  /** [ Why need StorageProperties? ]
   *
   * 1. Some hardware or third-party libraries add some additional storage
   * properties on top of the description of the basic DenseTensor, such as
   * memory desc of MKLDNN, storage_format and storage_layout of NPU,
   * these members are necessary for optimal performance, but if the properties
   * of each device are added to the DenseTensor with different macro isolation,
   * the memory layout of the DenseTensor will become more fragmented.
   * Under different compilation conditions, the member layout of the
   * DenseTensor is very unstable, which may introduce bugs that are difficult
   * to debug.
   *
   * 2. If the layout of DenseTensor is very different from the framework
   * itself, it is recommended to directly inherit TensorBase to implement
   * SpatialTensor.
   *
   * TODO(chenweihang): merge the dnnl::memory::desc and
   * dnnl::memory::format_tag into StorageProperties, dnnl::memory::desc is a
   * type that takes up a lot of space, original tensor members' size:
   *
   * DenseTensor size: 880
   * -------- ordered members --------:
   * DenseTensorMeta size: 128
   *  - is_scalar_ size: 1
   *  - DDim size: 80
   *  - DataType size: 4
   *  - DataLayout size: 4
   *  - LoD size: 24
   *  - offset size: 8
   *  std::shared_ptr<phi::Allocation> size: 16
   *  std::shared_ptr<InplaceVersion> size: 16 // need to be moved
   *  dnnl::memory::format_tag size: 4 // need to be moved
   *  dnnl::memory::desc size: 696 // need to be moved
   */
  std::unique_ptr<StorageProperties> storage_properties_{nullptr};

220 221 222 223
 public:
  /* Temporarily put InplaceVersion inside DenseTensor.
  Will move to AutogradMeta as soon as we switch to Eager Dygraph.
  */
L
Leo Chen 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
  /*
  NOTE(liym27): [ What is TensorInplaceVersion used for? ]

  TensorInplaceVersion is a version counter and every Tensor has a version
  counter. It's used to check whether an inplace operation will result in an
  incorrect gradient calculation. Version is incremented when the data of the
  Variable is modified in place.

  - Question: In what scenarios will version counters be shared?
  - Answer: When two Variables/VarBases share the same C++ Tensor(its Allocation
  may change), both of them share the same version counter. For examples:
   1. `z = paddle.assign(input=x, output=y)`, `z` shares the same version
  counter of `y` because z and y is the same VarBase;
   2. `y = x.detach()`, `y` shares the same version counter of `x`.

  - Question: In what scenarios will version counters NOT be shared?
  - Answer: Replacing a `Variable`'s data by calling
  `Tensor::ShareDataWith(...)` or `Tensor::ShareBufferWith(...)`. Because they
242
  share the same Allocation but not phi::DenseTensor.
L
Leo Chen 已提交
243

244
  - Question: Why put the inplace_version_counter_ in phi::DenseTensor instead
L
Leo Chen 已提交
245 246 247 248 249 250 251 252 253
  of Allocation or Variable?
  - Answer:
   1. Tensor can call ResetHolder() to reset the corresponding Allocation so
  that the inplace_version_counter_ changes if it's in Allocation, which will
  lead to confusing information about inplace version.
   2. If inplace_version_counter_ is in Variable, different VariableWrappers
   should be able to share the same Variable. However, a VariableWrapper hold a
   Variable object but not a pointer.
 */
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
  class InplaceVersion {
   public:
    bool IsUnique() const { return inplace_version_ == 0; }
    void Bump() { ++inplace_version_; }
    uint32_t CurrentVersion() const { return inplace_version_; }
    void SetInplaceVersionToZero() { inplace_version_ = 0; }

   private:
    uint32_t inplace_version_{0};
  };

 protected:
  std::shared_ptr<InplaceVersion> inplace_version_counter_{
      std::make_shared<InplaceVersion>()};

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* @jim19930609: This is a hack
In general, it is badly designed to fuse MKLDNN-specific objects into a
generic Tensor.
We temporarily leave them here to unblock Tensor Unification progress.
In the final state, we should come up with a MKLDNN_Tensor and move the
following codes there.
*/
#ifdef PADDLE_WITH_MKLDNN
  /**
   * @brief the detail format of memory block which have layout as kMKLDNN
   *
   * @note MKLDNN lib support various memory format like nchw, nhwc, nChw8C,
   *       nChw16c, etc. For a MKLDNN memory block, layout will be set as
   *       DataLayout::kMKLDNN meanwhile detail memory format will be kept in
   *       this field.
   */
  dnnl::memory::format_tag format_ = dnnl::memory::format_tag::undef;
286 287 288

  /// \brief memory descriptor of tensor which have layout set as kMKLDNN
  dnnl::memory::desc mem_desc_;
289 290
#endif

291
#ifndef PADDLE_WITH_CUSTOM_KERNEL
292
#include "paddle/phi/core/dense_tensor.inl"
293
#endif
294
};
295

296
}  // namespace phi