distribute_transpiler.py 117.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
T
tianshuo78520a 已提交
19
2. rename split grad variables to add trainer_id suffix ".trainer_%d".
20
3. modify trainer program add split_op to each grad variable.
T
tianshuo78520a 已提交
21 22 23
4. append send_op to send split variables to server and
5. add recv_op to fetch params(split blocks or origin param) from server.
6. append concat_op to merge split blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

1
123malin 已提交
33
import os
T
tangwei12 已提交
34
import sys
T
typhoonzero 已提交
35
import math
T
tangwei12 已提交
36 37
from functools import reduce

38
import collections
T
tangwei12 已提交
39
import six
Q
Qiao Longfei 已提交
40
import logging
41

T
tangwei12 已提交
42 43
import numpy as np

44
from .ps_dispatcher import RoundRobin, PSDispatcher
1
123malin 已提交
45
from .. import core, framework, unique_name, initializer
T
typhoonzero 已提交
46
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
47 48 49
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
50
from ..distribute_lookup_table import find_distributed_lookup_table
51
from . import collective
52

53 54
LOOKUP_TABLE_TYPE = ["lookup_table", "lookup_table_v2"]
LOOKUP_TABLE_GRAD_TYPE = ["lookup_table_grad", "lookup_table_v2_grad"]
C
Chengmo 已提交
55 56
OP_NAME_SCOPE = "op_namescope"
CLIP_OP_NAME_SCOPE = "@CLIP"
57
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
58 59
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
60
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
61
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


1
123malin 已提交
68 69 70 71 72 73 74
class DistributedMode:
    SYNC = 0
    ASYNC = 1
    HALF_ASYNC = 2
    GEO = 3


75 76 77
def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
78 79


T
typhoonzero 已提交
80
class VarBlock:
81

T
typhoonzero 已提交
82 83 84 85 86
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
87

T
typhoonzero 已提交
88 89
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
90 91


92 93 94 95
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
96
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
97
    """
98 99 100 101 102 103
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
104
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
105 106 107

    Args:
        var_list (list): List of variables.
108 109
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
T
tianshuo78520a 已提交
110
        min_block_size (int): Minimum split block size.
111
    Returns:
112
        blocks (list[(varname, block_id, current_block_size)]): A list
113
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
114 115 116
    """
    blocks = []
    for var in var_list:
117
        split_count = slice_count
T
typhoonzero 已提交
118 119 120 121
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
122
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
123 124 125 126 127 128 129 130 131
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
132
        # update split_count after aligning
T
typhoonzero 已提交
133
        split_count = int(math.ceil(var_numel / float(block_size)))
134
        for block_id in range(split_count):
135 136
            curr_block_size = min(block_size,
                                  var_numel - ((block_id) * block_size))
T
typhoonzero 已提交
137 138 139 140 141
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
142 143
class DistributeTranspilerConfig(object):
    """
144
        :api_attr: Static Graph
S
swtkiwi 已提交
145

146
    A configuration class that provide support for transpiler distributed jobs.
147 148 149
    Some important parameters are explained as follows:


H
haowang101779990 已提交
150 151
    .. py:attribute:: slice_var_up (bool)

152
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
153 154 155

    .. py:attribute:: split_method (PSDispatcher)

156 157 158 159
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
160 161 162

    .. py:attribute:: min_block_size (int)

T
tianshuo78520a 已提交
163
          Minimum number of split elements in block, default is 8192.
H
haowang101779990 已提交
164 165

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
tianshuo78520a 已提交
166
          We can use bandwidth efficiently when data size is larger than 2MB.If you
167 168 169 170
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
171

172 173 174
    Examples:
        .. code-block:: python

175 176 177
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

178 179
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
180 181
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
182 183 184 185 186
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
187
    enable_dc_asgd = False
188
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
189
    mode = "pserver"
190
    print_log = False
W
Wu Yi 已提交
191
    wait_port = True
Q
Qiao Longfei 已提交
192
    # split the send recv var in runtime
1
123malin 已提交
193 194
    __runtime_split_send_recv = False
    __sync_mode = True
G
gongweibao 已提交
195

196 197
    # half_async
    half_async = False
T
tangwei12 已提交
198
    completely_not_async = False
199

200 201 202 203
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

204
    nccl_comm_num = 1
205 206
    # The picture here illustrates the principle:
    # https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
207
    use_hierarchical_allreduce = False
208
    # Nccl ranks in a node when use hierarchical allreduce, it's set to gpu cards' number in most cases.
209 210
    hierarchical_allreduce_inter_nranks = 0

211
    # if mode is collective
212
    # supported modes: grad_allreduce, local_sgd
213 214
    collective_mode = None

215 216 217 218 219
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
1
123malin 已提交
220
        return self.__runtime_split_send_recv
221 222 223 224 225

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
1
123malin 已提交
226
        if value and self.__sync_mode:
227 228 229
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
1
123malin 已提交
230
        self.__runtime_split_send_recv = value
231 232 233

    @property
    def sync_mode(self):
1
123malin 已提交
234
        return self.__sync_mode
235 236 237 238 239

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
1
123malin 已提交
240
        if value and self.__runtime_split_send_recv:
241 242 243
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
1
123malin 已提交
244 245 246 247
        self.__sync_mode = value


class ServerRuntimeConfig(object):
248

1
123malin 已提交
249 250 251 252 253 254 255
    def __init__(self):
        self._rpc_send_thread_num = int(
            os.getenv("FLAGS_rpc_send_thread_num", "12"))
        self._rpc_get_thread_num = int(
            os.getenv("FLAGS_rpc_get_thread_num", "12"))
        self._rpc_prefetch_thread_num = int(
            os.getenv("FLAGS_rpc_prefetch_thread_num", "12"))
256

G
gongweibao 已提交
257

Y
gen rst  
yi.wu 已提交
258
class DistributeTranspiler(object):
Y
yi.wu 已提交
259
    """
260
        :api_attr: Static Graph
S
swtkiwi 已提交
261

Y
yi.wu 已提交
262 263 264
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
265
    Supports two modes: parameter server(pserver) mode and nccl2 mode.
Y
yi.wu 已提交
266

W
Wu Yi 已提交
267 268 269 270 271 272 273 274 275
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
276 277 278 279

    Examples:
        .. code-block:: python

280 281
            x = fluid.data(name='x', shape=[13], dtype='float32')
            y = fluid.data(name='y', shape=[1], dtype='float32')
282 283 284 285 286 287 288 289
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
290 291 292 293 294 295
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
296
            role = "PSERVER"
T
Tink_Y 已提交
297 298 299 300 301 302
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
303
                                                                pserver_program)
T
Tink_Y 已提交
304 305 306 307
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
308 309
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
310 311
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
312
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
313
            t = fluid.DistributeTranspiler(config=config)
314
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
315
            exe = fluid.ParallelExecutor(
316 317 318
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
319 320
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
321
    """
Y
Yancey1989 已提交
322

G
gongweibao 已提交
323 324 325 326 327
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()
1
123malin 已提交
328
        self._set_server_config()
G
gongweibao 已提交
329 330 331 332

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

T
tangwei12 已提交
333
        if self.config.sync_mode or self.config.completely_not_async:
1
123malin 已提交
334 335 336 337 338 339
            self.distributed_mode = DistributedMode.SYNC
        elif self.config.runtime_split_send_recv:
            self.distributed_mode = DistributedMode.ASYNC
        else:
            self.distributed_mode = DistributedMode.HALF_ASYNC

340 341 342
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
343 344
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)
1
123malin 已提交
345
        self.counter_var = None
G
gongweibao 已提交
346

1
123malin 已提交
347 348 349 350 351 352 353 354 355 356
    def _set_server_config(self, server_config=None):
        if server_config is None:
            self.server_config = ServerRuntimeConfig()
        elif isinstance(server_config, ServerRuntimeConfig):
            self.server_config = server_config
        else:
            raise TypeError(
                "In DistributeTranspiler, server_config must be an instance of ServerRuntimeConfig"
            )

W
Wu Yi 已提交
357 358 359 360
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
361 362
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
363 364 365 366 367 368
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
369 370
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
371 372 373

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
374 375 376 377 378 379 380 381 382

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
383 384 385 386
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
387 388 389 390 391
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
392 393 394 395 396
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
397 398 399 400 401 402
                    "trainers":
                    trainers.split(","),
                    "trainer_id":
                    trainer_id,
                    "nccl_comm_num":
                    self.config.nccl_comm_num,
403 404 405 406
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
407 408 409 410 411
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

412 413 414 415 416 417 418 419 420 421 422 423
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
H
hutuxian 已提交
424
        elif collective_mode != "single_process_multi_thread":
425 426
            raise ValueError('invalid trainers config: ' + str(trainers))

H
hutuxian 已提交
427 428
        if len(endpoints
               ) == 1 and collective_mode != "single_process_multi_thread":
429 430 431 432 433 434 435 436 437 438
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
439
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
440
        elif collective_mode == 'local_sgd':
441
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
H
hutuxian 已提交
442 443
        elif collective_mode == "single_process_multi_thread":
            transpiler = collective.SingleProcessMultiThread()
444 445 446
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

447 448 449 450 451 452
        transpiler.transpile(startup_program=startup_program,
                             main_program=main_program,
                             rank=trainer_id,
                             endpoints=endpoints,
                             current_endpoint=current_endpoint,
                             wait_port=wait_port)
453

Q
Qiao Longfei 已提交
454
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
455
        sparse_update_ops = []
456
        sparse_update_op_types = ["lookup_table", "nce", "lookup_table_v2"]
Q
Qiao Longfei 已提交
457 458
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
459
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
460 461 462
                sparse_update_ops.append(op)
        return sparse_update_ops

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

486
            if op_type in LOOKUP_TABLE_TYPE:
487 488 489 490 491 492 493 494 495 496 497 498
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
499

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
524 525 526 527
                        inputs={
                            "Ids": inputs,
                            'W': w
                        },
528 529 530 531 532 533
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
534 535
                            "trainer_id": self.trainer_id,
                            "lookup_table_version": op_type
536 537 538 539 540
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
541

542 543
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
544 545 546 547 548 549

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
550

551 552 553 554 555
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
556
                  sync_mode=True,
W
Wu Yi 已提交
557 558
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
559
        """
560
        Transpile the input program to distributed programs with config and arguments.
Y
yi.wu 已提交
561 562 563 564 565 566

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
567 568
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
569 570
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
571 572 573
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
574
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
575 576
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
577 578 579
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
580 581 582 583 584 585 586 587 588 589 590

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
591
        """
592 593 594 595 596 597 598 599 600

        err_msg = """

API is deprecated since 2.0.0 Please use FleetAPI instead.
WIKI: https://github.com/PaddlePaddle/Fleet/blob/develop/markdown_doc/transpiler

        """
        print(err_msg, file=sys.stderr)

601 602
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
603 604
        if startup_program is None:
            startup_program = default_startup_program()
605
        self.origin_program = program
W
Wu Yi 已提交
606 607
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
608

W
Wu Yi 已提交
609 610
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
611
            self.origin_program._trainers_endpoints = trainers.split(",")
612 613
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
614 615 616 617 618
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
619
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
620 621 622
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
623 624
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(
                        trainers_num, self.config.hierarchical_allreduce_inter_nranks)
625 626

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
627 628
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(
                        trainers_num, self.config.hierarchical_allreduce_inter_nranks)
629 630 631 632

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

633 634 635 636 637
            self._transpile_nccl2(trainer_id,
                                  trainers,
                                  current_endpoint,
                                  startup_program=startup_program,
                                  wait_port=self.config.wait_port)
W
Wu Yi 已提交
638 639
            return

640 641 642 643 644 645 646 647 648 649 650
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

651
        self.trainer_num = trainers
652
        self.sync_mode = sync_mode
653 654 655
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
656
        self.vars_overview = VarsDistributed()
657 658
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
659
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
660 661
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
662
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
663
        self.grad_name_to_param_name = dict()
664 665
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
666
            self.grad_name_to_param_name[grad_var.name] = param_var.name
667

Q
Qiao Longfei 已提交
668
        # get all sparse update ops
Q
Qiao Longfei 已提交
669
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
670
            self.origin_program)
Q
Qiao Longfei 已提交
671
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
672
        self.sparse_param_to_height_sections = dict()
T
tangwei12 已提交
673
        self.need_delete_optimize_vars = []
Q
Qiao Longfei 已提交
674

T
tangwei12 已提交
675 676 677
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
678
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
679 680 681
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

T
tianshuo78520a 已提交
682 683
        # split and create vars, then put split vars in dicts for later use.
        # step 1: split and create vars, then put split vars in dicts for later use.
G
gongweibao 已提交
684
        self._init_splited_vars()
685

G
gongweibao 已提交
686
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
687
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
688
        send_vars = []
689 690 691 692 693 694

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
695
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
696

G
gongweibao 已提交
697
        if not self.config.slice_var_up:
698 699
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
700

701
        self.grad_name_to_send_dummy_out = dict()
1
123malin 已提交
702

703
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
704
            eplist = ps_dispatcher.dispatch(splited_vars)
705

G
gongweibao 已提交
706
            if not self.config.slice_var_up:
707 708
                assert (len(splited_vars) == 1)

709
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
710
            if len(splited_vars) == 1:
711
                splited_grad_varname = splited_vars[0].name
712 713 714
                index = find_op_by_output_arg(program.global_block(),
                                              splited_grad_varname,
                                              reverse=True)
715

Y
Yancey1989 已提交
716
            elif len(splited_vars) > 1:
717
                orig_var = program.global_block().vars[splited_grad_varname]
718 719 720
                index = find_op_by_output_arg(program.global_block(),
                                              splited_grad_varname,
                                              reverse=True)
721

Q
Qiao Longfei 已提交
722 723 724 725
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
726
            else:
727 728 729
                AssertionError(
                    "Can not insert the send op by original "
                    "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
730

731 732 733 734 735 736 737
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
738 739
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
740
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
741

Q
Qiao Longfei 已提交
742 743 744 745 746
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
T
tangwei12 已提交
747

748
                if self.config.completely_not_async and self.trainer_num > 1:
T
tangwei12 已提交
749 750 751 752 753 754
                    send_varnames = [
                        "{}.trainer_{}".format(var.name, self.trainer_id)
                        for var in splited_vars
                    ]
                else:
                    send_varnames = [var.name for var in splited_vars]
Q
Qiao Longfei 已提交
755 756 757 758 759
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

T
tianshuo78520a 已提交
760 761
            # get send op_role_var, if not split, the grad should have .trainer suffix
            # if split, grad should be the original grad var name (split_by_ref and send
W
Wu Yi 已提交
762 763
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
764
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
765
                index=index + 1,
766
                type="send",
Q
Qiao Longfei 已提交
767
                inputs={"X": send_input_vars},
768
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
769
                attrs={
770 771 772 773 774 775 776 777
                    "epmap":
                    eplist,
                    "sections":
                    sections,
                    "send_varnames":
                    send_varnames,
                    RPC_OP_ROLE_ATTR_NAME:
                    RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
778 779 780
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
781
                    ]
Y
Yancey1989 已提交
782
                })
Y
update  
Yancey1989 已提交
783 784
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
785

786 787 788 789 790 791 792
        send_barrier_out = program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
        if self.has_distributed_lookup_table:
            self.grad_name_to_send_dummy_out[
                self.table_name] = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
        input_deps = list(self.grad_name_to_send_dummy_out.values())
793

794
        if not self.sync_mode:
1
123malin 已提交
795 796 797 798 799
            lr_ops = self._get_lr_ops()
            if len(lr_ops) > 0 and self.counter_var:
                decay_dummy_output = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
                if self.config.runtime_split_send_recv:
800
                    # async mode, using communicator to merge and send
1
123malin 已提交
801 802 803 804 805 806 807 808 809
                    send_varnames = [self.counter_var.name]
                else:
                    send_varnames = []
                sections = []
                program.global_block().append_op(
                    type="send",
                    inputs={"X": self.counter_var},
                    outputs={"Out": decay_dummy_output},
                    attrs={
810 811 812 813 814 815 816 817 818 819 820 821
                        "epmap":
                        pserver_endpoints,
                        "sections":
                        sections,
                        "send_varnames":
                        send_varnames,
                        "merge_add":
                        True,
                        "use_send_handler":
                        False,
                        RPC_OP_ROLE_ATTR_NAME:
                        RPC_OP_ROLE_ATTR_VALUE,
1
123malin 已提交
822 823 824
                        OP_ROLE_VAR_ATTR_NAME:
                        [self.counter_var.name, self.counter_var.name]
                    })
825 826 827 828 829
                input_deps.append(decay_dummy_output)

        if self.sync_mode:
            fetch_barrier_input = []

830 831 832 833 834 835 836 837 838 839 840 841 842
            program.global_block().append_op(type="send_barrier",
                                             inputs={"X": list(input_deps)},
                                             outputs={"Out": send_barrier_out},
                                             attrs={
                                                 "endpoints":
                                                 pserver_endpoints,
                                                 "trainer_id":
                                                 self.trainer_id,
                                                 "half_async":
                                                 False,
                                                 RPC_OP_ROLE_ATTR_NAME:
                                                 RPC_OP_ROLE_ATTR_VALUE
                                             })
843 844 845 846 847 848 849 850 851 852 853 854 855 856

            fetch_barrier_input.append(send_barrier_out)
        else:
            if self.config.runtime_split_send_recv and self.config.half_async:
                program.global_block().append_op(
                    type="send_barrier",
                    inputs={"X": list(input_deps)},
                    outputs={"Out": send_barrier_out},
                    attrs={
                        "endpoints": pserver_endpoints,
                        "trainer_id": self.trainer_id,
                        "half_async": True,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
Y
Yancey1989 已提交
857

G
gongweibao 已提交
858
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
859
        recv_vars = []
Y
update  
Yancey1989 已提交
860
        for _, var in enumerate(send_vars):
861
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
862
        ps_dispatcher.reset()
Y
Yancey1989 已提交
863 864
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
865
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
866 867
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
868

869 870 871 872
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

873 874
        need_sparse_update_params = {}

Y
Yancey1989 已提交
875
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
876
        all_recv_outputs = []
877
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
878
            eps = []
Q
Qiao Longfei 已提交
879
            table_names = []
Y
Yancey1989 已提交
880 881 882
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
883
                table_names.append(var.name)
W
Wu Yi 已提交
884 885 886 887
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
888
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
889
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
890

T
tianshuo78520a 已提交
891 892
            # get recv op_role_var, if not split, the grad should have .trainer suffix
            # if split, grad should be the original grad var name. ParallelExecutor
W
Wu Yi 已提交
893 894 895 896 897 898 899
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
900
            if param_varname in self.sparse_param_to_height_sections:
901 902 903 904 905
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

906
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
907
            else:
Q
Qiao Longfei 已提交
908 909 910
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
911
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
912
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
913
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
914

Q
Qiao Longfei 已提交
915 916 917 918 919
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
920 921 922 923 924 925 926 927
                        "epmap":
                        eps,
                        "recv_varnames":
                        recv_varnames,
                        "trainer_id":
                        self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME:
                        RPC_OP_ROLE_ATTR_VALUE,
Q
Qiao Longfei 已提交
928
                        OP_ROLE_VAR_ATTR_NAME:
929
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
930
                    })
T
typhoonzero 已提交
931

932 933
        self._update_remote_sparse_update_op(program, need_sparse_update_params)

Q
qiaolongfei 已提交
934
        if self.sync_mode:
W
Wu Yi 已提交
935
            # form a WAW dependency
936 937 938 939 940 941 942 943 944 945 946
            program.global_block().append_op(type="fetch_barrier",
                                             inputs={"X": fetch_barrier_input},
                                             outputs={"Out": all_recv_outputs},
                                             attrs={
                                                 "endpoints":
                                                 pserver_endpoints,
                                                 "trainer_id":
                                                 self.trainer_id,
                                                 RPC_OP_ROLE_ATTR_NAME:
                                                 RPC_OP_ROLE_ATTR_VALUE
                                             })
Y
Yancey1989 已提交
947

948
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
949 950
            if len(splited_var) <= 1:
                continue
951
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
952
            if param_varname not in self.sparse_param_to_height_sections:
953
                if not self.config.runtime_split_send_recv:
Q
Qiao Longfei 已提交
954 955 956 957 958 959 960 961
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
962

G
gongweibao 已提交
963 964
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

965
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
966 967
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
968
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
969

970 971 972
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

T
tangwei12 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
    def _get_sparse_table_names(self):
        sparse_update_op_types = ["lookup_table", "nce"]

        sparse_table_names = []
        for op in self.origin_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
                    'is_sparse') is True:
                sparse_table_names.append(op.input("W")[0])
            if op.type == "distributed_lookup_table":
                sparse_table_names.append(op.input("W")[0])

        if self.has_distributed_lookup_table:
            sparse_table_names.append(self.table_name)

        return list(set(sparse_table_names))

    def _fake_init_sparsetable(self, sparse_table_names):
        # delete table init op
        for table_name in sparse_table_names:
            table_var = self.startup_program.global_block().vars[table_name]
            table_param_init_op = []
            for op in self.startup_program.global_block().ops:
                if table_name in op.output_arg_names:
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
999 1000
                raise ValueError("table init op num should be 1, now is " +
                                 str(init_op_num))
T
tangwei12 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
            table_init_op = table_param_init_op[0]
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)

    def _delete_trainer_optimizer(self, is_startup):
        optimize_vars = []
        optimize_op_role_vars = []
        optimize_need_delete_vars = []

        for op in self.optimize_ops:
            optimize_vars.extend(op.input_arg_names)
            optimize_op_role_vars.extend(op.attr("op_role_var"))

        optimize_vars = list(set(optimize_vars))
        optimize_op_role_vars = list(set(optimize_op_role_vars))

        for var in optimize_vars:
            if var not in optimize_op_role_vars:
                optimize_need_delete_vars.append(var)
        need_delete_optimize_vars = list(set(optimize_need_delete_vars))

        if is_startup:
            init_ops = []
            for var in need_delete_optimize_vars:
                param_init_op = []
                for op in self.startup_program.global_block().ops:
                    if var in op.output_arg_names:
                        param_init_op.append(op)
                init_ops.extend(param_init_op)
            delete_ops(self.startup_program.global_block(), init_ops)

            for var in need_delete_optimize_vars:
                if self.startup_program.global_block().has_var(var):
                    self.startup_program.global_block()._remove_var(var)
        else:
            delete_ops(self.origin_program.global_block(), self.optimize_ops)
            for var in need_delete_optimize_vars:
                if self.origin_program.global_block().has_var(var):
                    self.origin_program.global_block()._remove_var(var)

W
Wu Yi 已提交
1045
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
1046
        """
1047
        Get transpiled trainer side program. The program on trainer side compared with origin program
C
Chengmo 已提交
1048 1049 1050
        has following difference:

            - Delete optimizer related op, because parameter updated on Pserver
1051
            - After the op which computed gradient of each parameter, add ``Send_op`` and ``Recv_op``
1052

C
Chengmo 已提交
1053
        Args:
1054
            wait_port(bool): Whether to wait for the parameter server to be ready before returning to program,
C
Chengmo 已提交
1055
            default is True
Y
yi.wu 已提交
1056 1057 1058

        Returns:
            Program: trainer side program.
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
1071
        """
T
typhoonzero 已提交
1072
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
1073
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
1074

T
tangwei12 已提交
1075 1076 1077 1078
        self._delete_trainer_optimizer(is_startup=True)
        sparse_table_names = self._get_sparse_table_names()
        self._fake_init_sparsetable(sparse_table_names)

T
typhoonzero 已提交
1079 1080
        lr_ops = self._get_lr_ops()
        delete_ops(self.origin_program.global_block(), lr_ops)
T
tangwei12 已提交
1081
        self._delete_trainer_optimizer(is_startup=False)
1082

1083
        self.origin_program.__str__()
T
tangwei12 已提交
1084
        self.startup_program.__str__()
G
gongweibao 已提交
1085

W
Wu Yi 已提交
1086 1087 1088
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

1089
        return self.origin_program
T
typhoonzero 已提交
1090

W
Wu Yi 已提交
1091
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
1092 1093 1094 1095
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
1096
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
1097
            eplist (list): A list of strings indicating
G
gongweibao 已提交
1098 1099 1100 1101

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
1102
        startup_program = self.startup_program
G
gongweibao 已提交
1103 1104 1105

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.
T
tangwei12 已提交
1106 1107 1108
        sparse_table_names = self._get_sparse_table_names()

        # self._fake_init_sparsetable(sparse_table_names)
1109
        # self._delete_trainer_optimizer(is_startup=True)
G
gongweibao 已提交
1110

M
minqiyang 已提交
1111
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1112 1113
            if varname in sparse_table_names:
                continue
G
gongweibao 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
1134
                inputs={"X": []},
G
gongweibao 已提交
1135 1136 1137
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
1138
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
1139 1140 1141
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
1142 1143
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
1144 1145 1146
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
1147
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
1148 1149
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
1150
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
1151 1152 1153
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
1154
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1155 1156
            if varname in sparse_table_names:
                continue
T
tianshuo78520a 已提交
1157
            # add concat ops to merge split parameters received from parameter servers.
G
gongweibao 已提交
1158 1159
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
1160
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
1161
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
1162 1163
                orig_param = startup_program.global_block().vars[varname]
            else:
1164 1165
                origin_param_var = self.origin_program.global_block(
                ).vars[varname]
W
Wu Yi 已提交
1166 1167 1168 1169 1170 1171
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
1172 1173 1174 1175 1176 1177 1178 1179
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
1180 1181
    def get_pserver_program(self, endpoint):
        """
1182
        Get parameter server side program.The program on pserver side compared with origin program
C
Chengmo 已提交
1183 1184
        has following difference:

1185
            - Only the following op is included: optimize-related op and communication-related op
C
Chengmo 已提交
1186 1187
            - NO.0 block only has variable definitions and ``listen_and_serv_op``
            - Every variable which need to be updated has a unique block
1188

Y
yi.wu 已提交
1189 1190
        Args:
            endpoint (str): current parameter server endpoint.
1191

Y
yi.wu 已提交
1192 1193
        Returns:
            Program: the program for current parameter server to run.
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
1208
        """
Y
yi.wu 已提交
1209 1210 1211 1212
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
1213 1214 1215
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
1216 1217
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
1218
        pserver_program.random_seed = self.origin_program.random_seed
1219 1220
        pserver_program._copy_dist_param_info_from(self.origin_program)

1221
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1222 1223 1224 1225 1226 1227 1228 1229
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1230 1231 1232 1233 1234
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
T
tangwei12 已提交
1244
            if self.sync_mode or self.config.completely_not_async and self.trainer_num > 1:
1245
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1255

Q
qiaolongfei 已提交
1256
        # step 3
1257
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1258 1259 1260
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1261
        # step 3.2
T
typhoonzero 已提交
1262 1263 1264 1265
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1266 1267
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1268
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1269
        # step 3.3
W
Wu Yi 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1288
        # Iterate through the ops, and if an op and the optimize ops
1289
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1290
        # append it into the sub program.
T
typhoonzero 已提交
1291 1292 1293

        global_ops = []

1294 1295 1296
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1297 1298
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1299
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1300
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1301 1302
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1303
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1304
                self._append_pserver_non_opt_ops(block, op)
1305

Y
Yancey1989 已提交
1306
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1307 1308 1309 1310 1311 1312 1313 1314
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1315
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1316 1317 1318

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1319
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1320 1321

            # clone ops
Y
Yancey1989 已提交
1322 1323
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1324
                # clone sub_block of op
Y
Yancey1989 已提交
1325
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1326 1327

            # reset the block of op
W
Wu Yi 已提交
1328
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1329

1330
        # append lr decay ops to the child block if exists
1331
        lr_ops = self._get_lr_ops()
1332 1333
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1334 1335

        lr_decay_block_id = -1
1336
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1337
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1338
                pserver_program.num_blocks - 1)
1339
            optimize_blocks.append(lr_decay_block)
1340
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1341
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1342
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1343 1344
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1345
            lr_decay_block_id = lr_decay_block.idx
1346

T
typhoonzero 已提交
1347
        # append op to the current block
Q
qiaolongfei 已提交
1348
        grad_to_block_id = []
Q
qiaolongfei 已提交
1349
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1350
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1351
            per_opt_block = pserver_program._create_block(pre_block_idx)
1352
            optimize_blocks.append(per_opt_block)
1353
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1354
            # append grad merging ops before clip and weight decay
1355 1356
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1357
            for _, op in enumerate(self.optimize_ops):
1358
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1359
                # merged_var should be the input var name of L2Decay
1360
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
1361 1362
                if op.attr(
                        OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name:
1363 1364 1365
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1366 1367 1368 1369 1370 1371
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1372
                            op not in global_ops:
1373 1374 1375 1376 1377
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1378

1379
        # dedup grad to ids list
W
Wu Yi 已提交
1380
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1381
        # append global ops
1382
        if global_ops:
W
Wu Yi 已提交
1383
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1384
                pserver_program.num_blocks - 1)
1385
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1386
            for glb_op in global_ops:
X
Xi Chen 已提交
1387
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1388
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1389

1390
        # process distributed lookup_table
Q
qiaolongfei 已提交
1391
        prefetch_var_name_to_block_id = []
1392 1393
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1394
            table_opt_block = self._create_table_optimize_block(
1395
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1396
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1397
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1398
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1399 1400
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1401

T
tangwei12 已提交
1402
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1403 1404
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1405

1406
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1407 1408
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1409 1410 1411 1412 1413 1414
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1415
        attrs = {
1416
            "optimize_blocks": optimize_blocks,
1417
            "endpoint": endpoint,
1418
            "pserver_id": self.pserver_endpoints.index(endpoint),
1419
            "Fanin": self.trainer_num,
1
123malin 已提交
1420
            "distributed_mode": self.distributed_mode,
Y
Yancey1989 已提交
1421
            "grad_to_block_id": grad_to_block_id,
1422
            "sparse_grad_to_param": sparse_grad_to_param,
1423
            "lr_decay_block_id": lr_decay_block_id,
1
123malin 已提交
1424 1425 1426 1427
            "rpc_get_thread_num": self.server_config._rpc_get_thread_num,
            "rpc_send_thread_num": self.server_config._rpc_send_thread_num,
            "rpc_prefetch_thread_num":
            self.server_config._rpc_prefetch_thread_num
1428
        }
T
tangwei12 已提交
1429 1430

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1431
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1432 1433
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1434

T
tangwei12 已提交
1435 1436 1437 1438
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1439
        # step5 append the listen_and_serv op
1440 1441 1442 1443
        pserver_program.global_block().append_op(type="listen_and_serv",
                                                 inputs={'X': recv_inputs},
                                                 outputs={},
                                                 attrs=attrs)
1444

W
Wu Yi 已提交
1445
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1446 1447
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1448 1449
        return pserver_program

W
Wu Yi 已提交
1450 1451 1452
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.
1453
        The ``main_program`` returned by this function is consistent with the
C
Chengmo 已提交
1454
        return value of the function ``get_pserver_program`` .
W
Wu Yi 已提交
1455 1456 1457

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1458

W
Wu Yi 已提交
1459 1460
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1475 1476
        """
        pserver_prog = self.get_pserver_program(endpoint)
1477 1478
        pserver_startup = self.get_startup_program(endpoint,
                                                   pserver_program=pserver_prog)
W
Wu Yi 已提交
1479 1480
        return pserver_prog, pserver_startup

1481 1482
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1483
                            pserver_program=None,
1484
                            startup_program=None):
T
typhoonzero 已提交
1485
        """
W
Wu Yi 已提交
1486 1487
        **Deprecated**

T
typhoonzero 已提交
1488 1489 1490
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1491 1492 1493

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1494 1495
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
T
tianshuo78520a 已提交
1496
                when initializing
1497

Y
yi.wu 已提交
1498 1499
        Returns:
            Program: parameter server side startup program.
1500 1501

        Examples:
1502 1503
            .. code-block:: python

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1515 1516
        """
        s_prog = Program()
W
Wu Yi 已提交
1517
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1518
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1530
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1531
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1532
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1533 1534 1535 1536
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1537
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1538 1539
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1550 1551

            if op_on_pserver:
1552 1553 1554
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1555
                if op.type in [
1556 1557
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1558
                ]:
W
Wu Yi 已提交
1559
                    op._set_attr("shape", list(new_outputs["Out"].shape))
1560 1561 1562 1563
                s_prog.global_block().append_op(type=op.type,
                                                inputs=new_inputs,
                                                outputs=new_outputs,
                                                attrs=op.all_attrs())
W
Wu Yi 已提交
1564 1565 1566 1567 1568
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
1569 1570 1571
                s_prog.global_block().append_op(type="assign",
                                                inputs={"X": startup_param_var},
                                                outputs={"Out": startup_tmpvar})
1572

T
typhoonzero 已提交
1573 1574
        return s_prog

1575 1576
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1577
        block_suffix = "block"
1578 1579 1580
        block_idx = 0
        offset = 0
        is_slice = False
1581

1582
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1583

1584 1585
        if not block_name:
            return is_slice, block_idx, offset
1586

1587 1588 1589 1590
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1591 1592 1593 1594 1595
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1596 1597 1598 1599 1600 1601 1602 1603 1604

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
1605

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
1622 1623 1624 1625
                    if key in [
                            "Param", "Grad", "LearningRate", "Beta1Tensor",
                            "Beta2Tensor"
                    ]:
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1663

Y
yi.wu 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1703
    def _init_splited_vars(self):
Y
yi.wu 已提交
1704
        # update these mappings for further transpile:
T
tianshuo78520a 已提交
1705 1706
        # 1. param_var_mapping: param var name -> [split params vars]
        # 2. grad_var_mapping: grad var name -> [split grads vars]
Y
yi.wu 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1727
        if self.config.slice_var_up:
Y
yi.wu 已提交
1728 1729
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
1730
            grad_blocks = slice_variable(grad_list, len(self.pserver_endpoints),
G
gongweibao 已提交
1731
                                         self.config.min_block_size)
Y
yi.wu 已提交
1732
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1733 1734
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1735 1736 1737
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1738 1739 1740 1741
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1742 1743
        assert (len(grad_blocks) == len(param_blocks))

1744
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1745 1746
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1747 1748 1749 1750 1751 1752 1753 1754

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

1755 1756 1757 1758 1759 1760
                self.vars_overview.add_distributed_var(origin_var=orig_var,
                                                       slice_var=splited_var,
                                                       block_id=block_id,
                                                       offset=offset,
                                                       is_slice=is_slice,
                                                       vtype="Param")
1761

1762
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1763 1764 1765 1766
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1767
        # dict(grad_splited_var -> param_splited_var)
1768
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1769 1770 1771
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1772
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1773
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1774 1775

        # create mapping of endpoint -> split var to create pserver side program
1776
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1777
        [
1778 1779 1780 1781
            self.param_grad_ep_mapping.update({ep: {
                "params": [],
                "grads": []
            }}) for ep in self.pserver_endpoints
Y
yi.wu 已提交
1782 1783
        ]

1784
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1785 1786
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1787
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1788
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1789 1790
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1791 1792
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1793 1794 1795 1796 1797 1798

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1799 1800
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1801
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1802 1803 1804
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1805 1806
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1807 1808
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1809 1810 1811
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1812
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1813
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1814 1815

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1816
                    self.all_out_emb_vars.append(out_var)
1817 1818

                    # delete lookup_table_op
1819
                    delete_ops(program.global_block(), [op])
1820 1821 1822
                    # break for loop
                    break

S
seiriosPlus 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1869
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1870
        # 2. add split_ids_op and send_op to send gradient to pservers
1871

1872 1873
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1874
        table_grad_name = grad_var_name(self.table_name)
1875 1876 1877 1878
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1879
                program.global_block()._insert_op(
1880 1881 1882 1883 1884
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1885 1886
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1887
                program.global_block()._insert_op(
1888
                    index=op_index + 2,
1889
                    type="send",
1890
                    inputs={'X': self.trainer_side_table_grad_list},
1891 1892 1893 1894 1895
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1896
                    attrs={
1897 1898 1899 1900 1901 1902
                        "epmap":
                        pserver_endpoints,
                        "trainer_id":
                        self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME:
                        RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
1903 1904 1905 1906
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1907
                    })
1908 1909 1910 1911 1912 1913
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1914
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
1930 1931 1932 1933
            inputs={
                'Ids': pserver_ids,
                "W": table_var
            },
S
seiriosPlus 已提交
1934 1935 1936 1937 1938 1939
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
1940 1941
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" +
                                             str(prefetch_block.idx))
Q
qiaolongfei 已提交
1942
        return prefetch_var_name_to_block_id
1943 1944

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1945
                                     pre_block_idx, grad_to_block_id):
1946
        # STEP: create table optimize block
1947
        table_opt_block = pserver_program._create_block(pre_block_idx)
1948
        # create table param and grad var in pserver program
1949 1950
        # create table optimize block in pserver program
        table_opt_op = [
1951 1952
            op for op in self.optimize_ops if 'Param' in op.input_names
            and op.input("Param")[0] == self.table_name
1953 1954
        ][0]

Y
Yancey1989 已提交
1955 1956
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1957

T
tangwei12 已提交
1958
        zero_dim = int(
1959 1960
            math.ceil(origin_param_var.shape[0] /
                      float(len(self.pserver_endpoints))))
T
tangwei12 已提交
1961 1962 1963
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1964 1965
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1966
            shape=table_shape,
Y
Yancey1989 已提交
1967 1968 1969
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1970

1971 1972
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1973
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1974
            self.origin_program.global_block().vars[grad_var_name(
1975
                self.table_name)])
1976

1977 1978 1979
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1980

1981 1982 1983
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1984
            pserver_side_table_grad_list = [
1985 1986 1987 1988 1989 1990 1991 1992 1993
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1994
            # append sum op for pserver_side_table_grad_list
1995 1996
            table_opt_block.append_op(
                type="sum",
1997
                inputs={"X": pserver_side_table_grad_list},
1998 1999
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
2000
        else:
T
tianshuo78520a 已提交
2001
            # in async_mode, for table gradient, it also need to be split to each parameter server
2002
            origin_grad_name = grad_var.name
2003 2004
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
2005 2006
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
2007
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
2008
            grad_var = pserver_program.global_block()._rename_var(
2009
                origin_grad_name, splited_grad_name)
2010 2011 2012 2013 2014 2015 2016

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
2017
        # only support sgd now
2018 2019 2020
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
2021
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
2022

2023 2024 2025
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

2026 2027
        return table_opt_block

T
tangwei12 已提交
2028 2029 2030 2031 2032
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

2033 2034 2035
        pserver_program.global_block().create_var(name="kLookupTablePath",
                                                  persistable=True,
                                                  type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
2036

W
Wu Yi 已提交
2037
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
2038
        # this 'file_path' do not be used in save lookup table variable
2039 2040 2041 2042
        checkpoint_save_block.append_op(type='save',
                                        inputs={'X': [self.table_name]},
                                        outputs={},
                                        attrs={'file_path': "none"})
T
tangwei12 已提交
2043 2044 2045

        return checkpoint_save_block.idx

T
typhoonzero 已提交
2046 2047 2048 2049 2050
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
2051
        Create vars for each split.
T
typhoonzero 已提交
2052 2053
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
2054 2055 2056 2057
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
2058
        Returns:
2059
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
2060
                from original var name to each var split.
T
typhoonzero 已提交
2061
        """
2062 2063

        # varname->[(block_id, current_block_size)]
2064
        block_map = collections.OrderedDict()
2065

2066
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
2067 2068
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
2069
            if varname not in block_map:
T
typhoonzero 已提交
2070
                block_map[varname] = []
2071
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
2072

T
tianshuo78520a 已提交
2073
        for varname, split in six.iteritems(block_map):
T
typhoonzero 已提交
2074
            orig_var = program.global_block().var(varname)
T
tianshuo78520a 已提交
2075
            if len(split) == 1:
2076
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
2077
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2078
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
2079
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
2080 2081 2082 2083 2084
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
2085
                continue
T
typhoonzero 已提交
2086
            var_mapping[varname] = []
T
typhoonzero 已提交
2087 2088 2089 2090
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
2091

T
tianshuo78520a 已提交
2092
            for i, block in enumerate(split):
T
typhoonzero 已提交
2093
                size = block[1]
M
minqiyang 已提交
2094
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
2095 2096 2097
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
2098
                new_var_name = ""
2099
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
2100
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
2101
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
2102 2103
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
2104
                                   (varname, i)
T
typhoonzero 已提交
2105
                var = program.global_block().create_var(
T
typhoonzero 已提交
2106 2107
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
2108
                    dtype=orig_var.dtype,
2109
                    type=orig_var.type,
T
tianshuo78520a 已提交
2110
                    shape=splited_shape)  # flattend split var
T
typhoonzero 已提交
2111
                var_mapping[varname].append(var)
W
Wu Yi 已提交
2112
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
2113
        return var_mapping
T
done  
typhoonzero 已提交
2114

2115
    def _clone_var(self, block, var, persistable=True):
2116 2117 2118 2119 2120 2121
        return block.create_var(name=var.name,
                                shape=var.shape,
                                dtype=var.dtype,
                                type=var.type,
                                lod_level=var.lod_level,
                                persistable=persistable)
T
done  
typhoonzero 已提交
2122

Q
Qiao Longfei 已提交
2123 2124 2125 2126 2127 2128 2129
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
2130
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
2131 2132
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
2133
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
2134
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
2135
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
2136 2137
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
            program.global_block()._insert_op(index=index + 1,
                                              type="split_selected_rows",
                                              inputs={"X": orig_var},
                                              outputs={"Out": splited_vars},
                                              attrs={
                                                  "height_sections":
                                                  height_sections,
                                                  RPC_OP_ROLE_ATTR_NAME:
                                                  DIST_OP_ROLE_ATTR_VALUE
                                              })
Y
update  
Yancey1989 已提交
2148
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
            program.global_block()._insert_op(index=index + 1,
                                              type="split_byref",
                                              inputs={"X": orig_var},
                                              outputs={"Out": splited_vars},
                                              attrs={
                                                  "sections":
                                                  height_sections,
                                                  RPC_OP_ROLE_ATTR_NAME:
                                                  DIST_OP_ROLE_ATTR_VALUE
                                              })
Y
update  
Yancey1989 已提交
2159 2160 2161
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
2162

T
typhoonzero 已提交
2163 2164 2165 2166
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
2167
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
2180
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
2181 2182
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
2183 2184
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
2185
                return param_shape
2186 2187 2188
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
2189 2190 2191
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
2192 2193
        elif op_type == "sgd":
            pass
2194 2195 2196 2197
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
2198 2199
        return orig_shape

2200 2201
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
2202
        orig_var_name = ""
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
2213
        else:
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2236
            return None
2237 2238 2239 2240
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2241
        else:
2242
            merged_var_name = orig_varname
2243 2244

        merged_var = pserver_block.vars[merged_var_name]
2245
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
T
tangwei12 已提交
2246
        if self.sync_mode or self.config.completely_not_async and self.trainer_num > 1:
2247
            vars2merge = []
2248
            for i in range(self.trainer_num):
2249
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2250
                                   (merged_var_name, i)
2251
                vars2merge.append(pserver_block.vars[per_trainer_name])
2252 2253 2254 2255
            optimize_block.append_op(type="sum",
                                     inputs={"X": vars2merge},
                                     outputs={"Out": merged_var},
                                     attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2256 2257 2258 2259 2260
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2261
        return merged_var
T
typhoonzero 已提交
2262

W
Wu Yi 已提交
2263 2264
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
2265 2266 2267 2268 2269
        local_param_bak = block.create_var(name="%s.local_bak" % param_var.name,
                                           shape=param_var.shape,
                                           type=param_var.type,
                                           dtype=param_var.dtype,
                                           persistable=False)
W
Wu Yi 已提交
2270
        # trainer_id_var is block local
2271 2272 2273 2274 2275
        trainer_id_var = block.create_var(name="@TRAINER_ID@",
                                          type=core.VarDesc.VarType.LOD_TENSOR,
                                          dtype=core.VarDesc.VarType.INT64,
                                          shape=[1],
                                          persistable=False)
W
Wu Yi 已提交
2276 2277 2278 2279 2280 2281

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
2282 2283 2284 2285 2286 2287
        block.append_op(type="ref_by_trainer_id",
                        inputs={
                            "X": ref_inputs,
                            "TrainerId": trainer_id_var
                        },
                        outputs={"Out": local_param_bak})
W
Wu Yi 已提交
2288 2289

        def __create_temp_var__():
2290 2291 2292 2293 2294
            return block.create_var(name=unique_name.generate("tmp_dc_output"),
                                    shape=param_var.shape,
                                    type=param_var.type,
                                    dtype=param_var.dtype,
                                    persistable=False)
W
Wu Yi 已提交
2295 2296

        o1 = __create_temp_var__()
2297 2298 2299 2300 2301 2302
        block.append_op(type="elementwise_sub",
                        inputs={
                            "X": param_var,
                            "Y": local_param_bak
                        },
                        outputs={"Out": o1})
W
Wu Yi 已提交
2303
        o2 = __create_temp_var__()
2304 2305 2306 2307 2308 2309
        block.append_op(type="elementwise_mul",
                        inputs={
                            "X": o1,
                            "Y": grad_var
                        },
                        outputs={"Out": o2})
W
Wu Yi 已提交
2310
        o3 = __create_temp_var__()
2311 2312 2313 2314 2315 2316
        block.append_op(type="elementwise_mul",
                        inputs={
                            "X": o2,
                            "Y": grad_var
                        },
                        outputs={"Out": o3})
W
Wu Yi 已提交
2317 2318
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
2319 2320 2321 2322 2323 2324
        block.append_op(type="elementwise_add",
                        inputs={
                            "X": grad_var,
                            "Y": o3
                        },
                        outputs={"Out": o4})
W
Wu Yi 已提交
2325 2326
        return o4

2327
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2328 2329
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2330
        program = optimize_block.program
T
typhoonzero 已提交
2331
        pserver_block = program.global_block()
2332
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2343 2344 2345 2346
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2347
        for key in opt_op.input_names:
T
typhoonzero 已提交
2348
            if key == "Grad":
W
Wu Yi 已提交
2349 2350 2351
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2362
            elif key == "Param":
W
Wu Yi 已提交
2363
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2364 2365
                if not param_block:
                    return
2366 2367 2368 2369
                tmpvar = pserver_block.create_var(name=param_block.name,
                                                  persistable=True,
                                                  dtype=param_block.dtype,
                                                  shape=param_block.shape)
T
typhoonzero 已提交
2370
                new_inputs[key] = tmpvar
2371
            elif key == "LearningRate":
2372
                # learning rate variable has already be created by non-optimize op,
2373
                # don't create it once again.
2374
                lr_varname = opt_op.input(key)[0]
2375
                if lr_varname in pserver_block.vars:
2376 2377 2378 2379 2380 2381 2382 2383 2384
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2385

T
typhoonzero 已提交
2386
        for key in opt_op.input_names:
2387
            new_shape = None
2388 2389 2390 2391
            if key in [
                    "Param", "Grad", "LearningRate", "Beta1Tensor",
                    "Beta2Tensor"
            ]:
T
typhoonzero 已提交
2392
                continue
2393
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2394
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2395
            # update accumulator variable shape
2396 2397 2398 2399 2400 2401 2402
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape,
                                                        param_var.shape)
            tmpvar = pserver_block.create_var(name=var.name,
                                              persistable=var.persistable,
                                              dtype=var.dtype,
                                              shape=new_shape)
T
typhoonzero 已提交
2403
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2404

2405
        # change output's ParamOut variable
2406 2407
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2408
        outputs["ParamOut"] = new_inputs["Param"]
2409 2410 2411 2412
        optimize_block.append_op(type=opt_op.type,
                                 inputs=new_inputs,
                                 outputs=outputs,
                                 attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2413

2414 2415 2416
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
2417 2418
                str(new_inputs["Grad"].name) + ":" +
                str(new_inputs["Param"].name))
2419

2420 2421 2422 2423 2424 2425
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
T
tianshuo78520a 已提交
2426
            a@GRAD -> a@GRAD (a is not split)
2427
            fc_0.w_0 -> fc_0.w_0.block_0
T
tianshuo78520a 已提交
2428
            fc_0.w_0 -> fc_0.w_0 (weight is not split)
2429 2430
            _generated_var_123 -> None
        """
2431
        grad_block = None
M
minqiyang 已提交
2432
        for _, g in six.iteritems(var_dict):
2433
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2434
                # skip per trainer vars
2435
                if g.name.find(".trainer_") == -1:
T
tianshuo78520a 已提交
2436
                    # only param or grads have split blocks
2437 2438
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2439 2440
                        grad_block = g
                        break
2441 2442
        return grad_block

Q
Qiyang Min 已提交
2443 2444 2445
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2446
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2447 2448 2449 2450
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2451
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2452 2453 2454

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2455
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2456 2457 2458 2459
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2460
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2461

2462 2463 2464 2465
        return block.append_op(type=op.type,
                               inputs=inputs,
                               outputs=outputs,
                               attrs=op.all_attrs())
Q
Qiyang Min 已提交
2466 2467

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2468
        program = optimize_block.program
2469
        # Append the ops for parameters that do not need to be optimized/updated
2470 2471
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2472
        for key, varlist in six.iteritems(inputs):
2473 2474
            if not isinstance(varlist, list):
                varlist = [varlist]
2475 2476
            for i in range(len(varlist)):
                var = varlist[i]
T
tianshuo78520a 已提交
2477
                # for ops like clipping and weight decay, get the split var (xxx.block0)
2478
                # for inputs/outputs
2479
                grad_block = self._get_pserver_grad_param_var(
2480 2481
                    var,
                    program.global_block().vars)
2482
                if grad_block:
2483
                    varlist[i] = grad_block
2484
                elif var.name not in program.global_block().vars:
2485 2486 2487 2488 2489
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2490

2491 2492
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2493
        for key, varlist in six.iteritems(outputs):
2494 2495
            if not isinstance(varlist, list):
                varlist = [varlist]
2496 2497 2498
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2499 2500
                    var,
                    program.global_block().vars)
2501
                if grad_block:
2502
                    varlist[i] = grad_block
2503
                elif var.name not in program.global_block().vars:
2504 2505 2506 2507 2508
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2509

2510 2511 2512 2513
        return optimize_block.append_op(type=opt_op.type,
                                        inputs=inputs,
                                        outputs=outputs,
                                        attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2514

2515 2516 2517 2518
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2519
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2520
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2521 2522 2523 2524 2525 2526
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2527 2528
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2529 2530 2531 2532 2533 2534
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2535
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2536
        if "Param" in op.input_names and \
T
tangwei12 已提交
2537
                "LearningRate" in op.input_names:
2538 2539 2540 2541 2542 2543 2544
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2545
        if op.input("Param")[0] in param_names:
2546 2547 2548
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2549
                param = op.input("Param")[0]
T
typhoonzero 已提交
2550
                if same_or_split_var(n, param) and n != param:
2551 2552 2553
                    return True
            return False

T
typhoonzero 已提交
2554
    def _get_input_map_from_op(self, varmap, op):
2555
        """Returns a dict from op input name to the vars in varmap."""
2556
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2568
        """Returns a dict from op output name to the vars in varmap."""
2569
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2579 2580

    def _get_lr_ops(self):
2581 2582
        lr_ops = []
        block = self.origin_program.global_block()
1
123malin 已提交
2583
        for index, op in enumerate(block.ops):
X
fix  
Xin Pan 已提交
2584 2585 2586 2587
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1
123malin 已提交
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
                if self.sync_mode == False and op.type == 'increment':
                    inputs = self._get_input_map_from_op(
                        self.origin_program.global_block().vars, op)
                    outputs = self._get_output_map_from_op(
                        self.origin_program.global_block().vars, op)
                    for key in outputs:
                        counter_var = outputs[key]
                    all_trainer_counter_inputs = [
                        self.origin_program.global_block().create_var(
                            name="%s.trainer_%d" % (counter_var.name, id_),
                            type=counter_var.type,
                            shape=counter_var.shape,
                            dtype=counter_var.dtype,
                            persistable=counter_var.persistable)
                        for id_ in range(self.trainer_num)
                    ]
2604 2605
                    for i, op in enumerate(
                            self.startup_program.global_block().ops):
1
123malin 已提交
2606 2607
                        if op.type == 'fill_constant':
                            for key in op.output_names:
2608 2609 2610 2611 2612
                                if len(op.output(key)) == 1 and op.output(
                                        key)[0] == counter_var.name:
                                    self.startup_program.global_block(
                                    ).ops[i]._set_attr(
                                        'value', float(0.0 - self.trainer_num))
1
123malin 已提交
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
                    for var in all_trainer_counter_inputs:
                        if var.name == "%s.trainer_%d" % (counter_var.name,
                                                          self.trainer_id):
                            self.counter_var = var
                        self.startup_program.global_block().create_var(
                            name=var.name,
                            type=var.type,
                            dtype=var.dtype,
                            shape=var.shape,
                            persistable=var.persistable,
                            initializer=initializer.Constant(1))
                    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
                    )
                    block._remove_op(index)
                    op = block._insert_op(
                        index,
                        type='sum',
                        inputs={'X': all_trainer_counter_inputs},
                        outputs=outputs,
                        attrs={op_role_attr_name: LR_SCHED_OP_ROLE_ATTR_VALUE})
2633 2634 2635 2636 2637
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2638 2639 2640 2641
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2642
            if self._is_optimizer_op(op):
2643 2644 2645 2646
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2647
        block = self.origin_program.global_block()
2648 2649 2650 2651 2652
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2653

2654 2655 2656 2657 2658
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2659
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2660 2661 2662 2663 2664 2665
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2666 2667
                    # we only need to append op for once
                    break
2668
        return lr_ops
Y
Yancey1989 已提交
2669

W
Wu Yi 已提交
2670 2671 2672 2673 2674
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2675 2676
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2677 2678 2679
            return True
        return False

Y
Yancey1989 已提交
2680
    def _get_optimize_pass(self):
2681
        """
2682
        Get optimizer operators, parameters and gradients from origin_program
2683 2684
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2685
            params_grads (dict): parameter->gradient.
2686
        """
Y
Yancey1989 已提交
2687 2688 2689
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2690 2691
        # tmp set to dedup
        optimize_params = set()
2692
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2693
        for op in block.ops:
W
Wu Yi 已提交
2694
            if self._is_opt_role_op(op):
C
Chengmo 已提交
2695
                # Todo(chengmo): Whether clip related op belongs to Optimize guard should be discussed
2696
                # delete clip op from opt_ops when run in Parameter Server mode
C
Chengmo 已提交
2697 2698 2699 2700 2701 2702 2703 2704
                if OP_NAME_SCOPE in op.all_attrs(
                ) and CLIP_OP_NAME_SCOPE in op.attr(
                        OP_NAME_SCOPE
                ) and self.config.mode != "nccl2" and self.config.mode != "collective":
                    op._set_attr(
                        "op_role",
                        int(core.op_proto_and_checker_maker.OpRole.Backward))
                    continue
Y
Yancey1989 已提交
2705
                opt_ops.append(op)
2706 2707 2708 2709 2710 2711
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2712 2713
                        params_grads.append([
                            origin_var_dict[param_name],
2714
                            origin_var_dict[grad_name]
2715
                        ])
Y
Yancey1989 已提交
2716 2717
            else:
                pass
C
Chengmo 已提交
2718 2719 2720 2721 2722 2723

        # designed for special situation
        special_distribute_update_vars = self._get_distribute_update_vars()
        if special_distribute_update_vars:
            params_grads = params_grads + special_distribute_update_vars

Y
Yancey1989 已提交
2724
        return opt_ops, params_grads
C
Chengmo 已提交
2725 2726

    def _get_distribute_update_vars(self):
2727
        # TODO(chengmo): find more powerful and simple way to deal with these special situation
C
Chengmo 已提交
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
        """
        This Function is used for a special model, like PyramidDnn which has pyramid hash op.
        Some Parameters don't use optimizing op to update its value, but updated in its BP process.
        In these cases, Transpilse can't find these special vars by optimizing op information.
        So we add this function and add attr "distribute_update_vars" to tell transpiler these Parameter
        need to be updated in distribute training.
        We assume these special var send and receive the same var_name.
        """
        block = self.origin_program.global_block()
        origin_var_dict = self.origin_program.global_block().vars
        params = []
        for op in block.ops:
            special_attr = "distribute_update_vars"
            if special_attr in op.all_attrs():
                if op.attr(special_attr):
                    for param_name in op.attr(special_attr).split(","):
                        params.append(origin_var_dict[param_name])
        unique_params = list(set(params))
        params_grads = []
        for var in unique_params:
            params_grads.append([var, var])
        return params_grads