initializer.py 51.2 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import math
18
import functools
19
from . import framework
20
from . import core
21
from .framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph, default_main_program, _current_expected_place
22
from .lazy_init import lazy_init_helper
23
from .framework import program_guard
24
import numpy as np
25
from .core import VarDesc
W
Wu Yi 已提交
26
from . import unique_name
27
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
28
from paddle import _C_ops, _legacy_C_ops
29
import paddle
30

31
__all__ = [
32
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
33 34
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
35
    'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
36
]
37

38 39 40
_global_weight_initializer_ = None
_global_bias_initializer_ = None

41 42 43 44 45 46 47 48 49 50

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
51
    def __init__(self):
52 53
        pass

54
    def __call__(self, param, block=None):
55
        if not lazy_init_helper().state:
56 57 58 59 60
            return self.forward(param, block)

        return self._lazy_init(param, block)

    def forward(self, param, block=None):
61 62 63 64
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

65
    def _lazy_init(self, param, block=None):
66 67 68
        """
        Apply lazy initialization
        """
69 70
        assert in_dygraph_mode()

71 72 73 74 75 76
        def init_op_creator(forward, param, block):
            new_var = param._to_static_var(True, block=block)
            # Record initializer operator
            with lazy_init_helper():
                forward(new_var, block)

77
        # Add hook function for initializing param in dygraph mode
78 79 80
        param.set_init_func(functools.partial(self.forward, param, block))
        param._init_op_creator = functools.partial(init_op_creator,
                                                   self.forward, param)
81 82 83

        return param

84 85
    def _check_block(self, block):
        if block is None:
86
            block = default_main_program().global_block()
87 88 89

        return block

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

125 126 127

class ConstantInitializer(Initializer):
    """Implements the constant initializer
128 129

    Args:
130
        value (float32): constant value to initialize the variable
131 132 133 134

    Examples:
        .. code-block:: python

135 136 137
            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()
D
Double_V 已提交
138
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
139 140 141 142
            fc = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
143

144 145
    """

146
    def __init__(self, value=0.0, force_cpu=False):
147 148 149
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
150
        self._force_cpu = force_cpu
151

152
    def forward(self, var, block=None):
153
        """Initialize the input tensor with constant.
154 155

        Args:
156 157 158
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
159 160

        Returns:
161
            The initialization op
162
        """
163 164
        block = self._check_block(block)

165 166
        assert (isinstance(var, framework.Variable)
                or isinstance(var, framework.EagerParamBase))
167
        assert isinstance(block, framework.Block)
168

169 170
        if in_dygraph_mode():
            place = _current_expected_place()
171 172
            if self._force_cpu:
                place = core.CPUPlace()
173 174
            _C_ops.full_(var, var.shape, str(float(self._value)), var.dtype,
                         place)
175 176
            return None
        elif _in_legacy_dygraph():
177 178 179 180 181
            _legacy_C_ops.fill_constant(var, 'value', float(self._value),
                                        'force_cpu', self._force_cpu, 'dtype',
                                        int(var.dtype), 'str_value',
                                        str(float(self._value)), 'shape',
                                        var.shape)
182 183
            return None
        else:
184 185 186 187 188 189 190 191 192 193
            op = block.append_op(type="fill_constant",
                                 outputs={"Out": var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": int(var.dtype),
                                     "value": float(self._value),
                                     'str_value': str(float(self._value)),
                                     'force_cpu': self._force_cpu
                                 },
                                 stop_gradient=True)
194

195
            var.op = op
196
            return op
197 198 199


class UniformInitializer(Initializer):
200
    """Implements the random uniform distribution initializer
201 202 203 204 205

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
206 207 208 209 210 211
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
212 213 214 215

    Examples:
        .. code-block:: python

X
xiaoting 已提交
216
            import paddle.fluid as fluid
217
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
218
            fc = fluid.layers.fc(input=x, size=10,
219
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
220 221
    """

222 223 224 225 226 227 228
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
229 230
        assert low is not None
        assert high is not None
231
        assert high >= low
232
        assert seed is not None
233 234 235 236 237
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
238 239 240 241
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
242 243 244
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
245

246
    def forward(self, var, block=None):
247
        """Initialize the input tensor with Uniform distribution.
248 249

        Args:
250 251 252
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
253 254

        Returns:
255
            The initialization op
256
        """
257 258
        block = self._check_block(block)

259
        assert isinstance(block, framework.Block)
260 261
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
262 263
                                 "uniform_random")

D
dzhwinter 已提交
264 265
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
266

X
polish  
Xin Pan 已提交
267
        # to be compatible of fp16 initializers
268
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
269
            out_dtype = VarDesc.VarType.FP32
270 271 272 273 274 275
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['uniform_random', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
W
Wu Yi 已提交
276 277 278 279
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
280
        if framework._non_static_mode():
281 282 283 284 285 286 287 288 289 290
            if in_dygraph_mode():
                out_var = _C_ops.uniform_random(var.shape, out_dtype, self._low,
                                                self._high, self._seed,
                                                _current_expected_place())
            elif _in_legacy_dygraph():
                out_var = _legacy_C_ops.uniform_random(
                    'shape', var.shape, 'min', self._low, 'max', self._high,
                    'seed', self._seed, 'dtype', out_dtype, 'diag_num',
                    self._diag_num, 'diag_step', self._diag_step, 'diag_val',
                    self._diag_val)
291
            if var.dtype == VarDesc.VarType.FP16:
292 293 294 295 296 297
                if in_dygraph_mode():
                    var_tmp = _C_ops.cast(out_var, var.dtype)
                elif _in_legacy_dygraph():
                    var_tmp = _legacy_C_ops.cast(out_var, 'in_dtype',
                                                 out_var.dtype, 'out_dtype',
                                                 var.dtype)
298
                var_tmp._share_underline_tensor_to(var)
299
            else:
300
                out_var._share_underline_tensor_to(var)
301 302
            return None
        else:
303 304 305 306 307 308 309 310 311 312 313 314 315 316
            op = block.append_op(type="uniform_random",
                                 inputs={},
                                 outputs={"Out": out_var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": out_dtype,
                                     "min": self._low,
                                     "max": self._high,
                                     "seed": self._seed,
                                     "diag_num": self._diag_num,
                                     "diag_step": self._diag_step,
                                     "diag_val": self._diag_val
                                 },
                                 stop_gradient=True)
317 318

            if var.dtype == VarDesc.VarType.FP16:
319 320 321 322 323 324 325
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
W
Wu Yi 已提交
326

327
            var.op = op
328
            return op
329 330 331


class NormalInitializer(Initializer):
332 333 334 335 336 337 338 339 340 341
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
342
            import paddle.fluid as fluid
343
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
344 345
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
346

347 348 349 350 351 352 353 354 355 356 357
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

358
    def forward(self, var, block=None):
359
        """Initialize the input tensor with Normal distribution.
360 361

        Args:
362 363 364
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
365 366

        Returns:
367
            The initialization op
368
        """
369 370
        block = self._check_block(block)

371
        assert isinstance(block, framework.Block)
372

373 374
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
375
                                 "guassian_random")
376

377 378 379
        # to be compatible of fp16 initalizers
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
            out_dtype = VarDesc.VarType.FP32
380 381 382 383 384 385
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['normal_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
386 387 388 389
        else:
            out_dtype = var.dtype
            out_var = var

D
dzhwinter 已提交
390 391
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
392

393 394
        if in_dygraph_mode():
            place = _current_expected_place()
395 396 397
            out_var = _C_ops.gaussian_random(var.shape, self._mean,
                                             self._std_dev, self._seed,
                                             out_dtype, place)
398 399

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
400
                var_tmp = _C_ops.cast(out_var, var.dtype)
401 402 403 404 405 406
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
            return None

        if _in_legacy_dygraph():
407 408 409
            out_var = _legacy_C_ops.gaussian_random(
                'shape', var.shape, 'dtype', out_dtype, 'mean', self._mean,
                'std', self._std_dev, 'seed', self._seed, 'use_mkldnn', False)
410 411

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
412 413
                var_tmp = _legacy_C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                             'out_dtype', var.dtype)
414 415 416
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
417 418
            return None
        else:
419 420 421 422 423 424 425 426 427 428 429
            op = block.append_op(type="gaussian_random",
                                 outputs={"Out": out_var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": out_dtype,
                                     "mean": self._mean,
                                     "std": self._std_dev,
                                     "seed": self._seed,
                                     "use_mkldnn": False
                                 },
                                 stop_gradient=True)
430

431
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
432 433 434 435 436 437 438
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
439
            var.op = op
440
            return op
441 442


443 444 445 446 447 448 449 450 451 452 453
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
454
            import paddle.fluid as fluid
455
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
456 457 458 459 460 461 462 463
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
464
        super(TruncatedNormalInitializer, self).__init__()
465 466 467 468
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

469
    def forward(self, var, block=None):
470
        """Initialize the input tensor with TruncatedNormal distribution.
471 472

        Args:
473 474 475
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
476 477

        Returns:
478
            The initialization op
479
        """
480 481
        block = self._check_block(block)

482 483
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
484

485 486
        if self._seed == 0:
            self._seed = block.program.random_seed
487 488

        # to be compatible of fp16 initalizers
489
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
490
            out_dtype = VarDesc.VarType.FP32
491 492 493 494 495 496
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['truncated_gaussian_random', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
497 498 499 500
        else:
            out_dtype = var.dtype
            out_var = var

501
        if in_dygraph_mode():
502
            out_var = _C_ops.truncated_gaussian_random(
503 504 505
                var.shape, self._mean, self._std_dev, self._seed, out_dtype,
                _current_expected_place())
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
506
                var_tmp = _C_ops.cast(out_var, var.dtype)
507 508 509 510 511 512
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
            return None

        if _in_legacy_dygraph():
513 514 515
            out_var = _legacy_C_ops.truncated_gaussian_random(
                'shape', var.shape, 'dtype', out_dtype, 'mean', self._mean,
                'std', self._std_dev, 'seed', self._seed)
516
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
517 518
                var_tmp = _legacy_C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                             'out_dtype', var.dtype)
519
                var_tmp._share_underline_tensor_to(var)
520
            else:
521
                out_var._share_underline_tensor_to(var)
522 523
            return None
        else:
524 525 526 527 528 529 530 531 532 533
            op = block.append_op(type="truncated_gaussian_random",
                                 outputs={"Out": out_var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": out_dtype,
                                     "mean": self._mean,
                                     "std": self._std_dev,
                                     "seed": self._seed
                                 },
                                 stop_gradient=True)
534

535
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
536 537 538 539 540 541 542
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
543
            var.op = op
544
            return op
545 546


547
class XavierInitializer(Initializer):
548
    r"""
549
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
550 551 552
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
553 554 555

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
556 557 558 559 560 561
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

562
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
563
    is
564

Q
qiaolongfei 已提交
565
    .. math::
566

Q
qiaolongfei 已提交
567
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
568 569


Q
qiaolongfei 已提交
570
    Args:
X
xiaoting 已提交
571 572
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
573
                inferred from the variable.
X
xiaoting 已提交
574
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
575 576 577 578 579 580 581 582 583
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
584
            import paddle.fluid as fluid
X
xiaoting 已提交
585
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
586 587 588 589 590 591 592
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
593 594 595 596 597 598 599 600
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

601
    def forward(self, var, block=None):
602
        """Initialize the input tensor with Xavier initialization.
603 604

        Args:
605 606 607
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
608 609

        Returns:
610
            The initialization op
611
        """
612 613
        block = self._check_block(block)

614
        assert isinstance(block, framework.Block)
615 616
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
617 618
                                 "xavier_init")

619 620 621 622 623 624
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
625 626 627
        if self._seed == 0:
            self._seed = block.program.random_seed

628
        # to be compatible of fp16 initalizers
629 630
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
631
            out_dtype = VarDesc.VarType.FP32
632 633 634 635 636 637
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['xavier_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
638 639 640 641
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
642
        if framework._non_static_mode():
643
            if self._uniform:
644
                limit = math.sqrt(6.0 / float(fan_in + fan_out))
645
                if in_dygraph_mode():
646 647 648
                    out_var = _C_ops.uniform_random(out_var.shape, out_dtype,
                                                    -limit, limit, self._seed,
                                                    _current_expected_place())
649
                elif _in_legacy_dygraph():
650 651 652
                    out_var = _legacy_C_ops.uniform_random(
                        'shape', out_var.shape, 'min', -limit, 'max', limit,
                        'seed', self._seed, 'dtype', out_dtype)
653
            else:
654
                std = math.sqrt(2.0 / float(fan_in + fan_out))
655 656 657

                if in_dygraph_mode():
                    place = _current_expected_place()
658 659 660
                    out_var = _C_ops.gaussian_random(out_var.shape, 0.0, std,
                                                     self._seed, out_dtype,
                                                     place)
661
                else:
662 663 664
                    out_var = _legacy_C_ops.gaussian_random(
                        'shape', out_var.shape, 'dtype', out_dtype, 'mean', 0.0,
                        'std', std, 'seed', self._seed)
665 666 667

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
668
                if in_dygraph_mode():
669
                    var_tmp = _C_ops.cast(out_var, var.dtype)
670
                elif _in_legacy_dygraph():
671 672 673
                    var_tmp = _legacy_C_ops.cast(out_var, 'in_dtype',
                                                 out_var.dtype, 'out_dtype',
                                                 var.dtype)
674
                var_tmp._share_underline_tensor_to(var)
675
            else:
676
                out_var._share_underline_tensor_to(var)
677
            return None
678
        else:
679
            if self._uniform:
680
                limit = math.sqrt(6.0 / float(fan_in + fan_out))
681 682 683 684 685 686 687 688 689 690 691
                op = block.append_op(type="uniform_random",
                                     inputs={},
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": out_dtype,
                                         "min": -limit,
                                         "max": limit,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
692
            else:
693
                std = math.sqrt(2.0 / float(fan_in + fan_out))
694 695 696 697 698 699 700 701 702 703
                op = block.append_op(type="gaussian_random",
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": out_dtype,
                                         "mean": 0.0,
                                         "std": std,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
704 705 706

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
707 708 709 710 711 712 713
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
714

715
            var.op = op
716
            return op
717 718 719


class MSRAInitializer(Initializer):
720
    r"""Implements the MSRA initializer a.k.a. Kaiming Initializer
721 722

    This class implements the weight initialization from the paper
723 724 725 726 727 728 729 730
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

731
        x = gain \times \sqrt{\frac{3}{fan\_in}}
732 733 734 735 736 737

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

738
        \frac{gain}{\sqrt{{fan\_in}}}
739 740

    Args:
741 742 743
        uniform (bool, optional): whether to use uniform or normal distribution
        fan_in (float32|None, optional): fan_in (in_features) of trainable Tensor, If None, it will be infered automaticly. If you don't want to use in_features of the Tensor, you can set the value of 'fan_in' smartly by yourself. default is None.
        seed (int32, optional): random seed.
744 745
        negative_slope (float, optional): negative_slope (only used with leaky_relu). default is 0.0.
        nonlinearity(str, optional): the non-linear function. default is relu.
746 747 748 749 750 751

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
752

753
            import paddle
X
xsrobin 已提交
754
            import paddle.fluid as fluid
755
            paddle.enable_static()
D
Double_V 已提交
756
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
757 758
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
759

760 761
    """

762 763 764 765 766 767
    def __init__(self,
                 uniform=True,
                 fan_in=None,
                 seed=0,
                 negative_slope=0,
                 nonlinearity='relu'):
768 769 770 771 772 773 774 775
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed
776 777
        self._negative_slope = negative_slope
        self._nonlinearity = nonlinearity
778

779
    def forward(self, var, block=None):
780
        """Initialize the input tensor with MSRA initialization.
781 782

        Args:
783 784 785
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
786 787

        Returns:
788
            The initialization op
789
        """
790 791
        block = self._check_block(block)

792 793 794 795 796 797 798
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
799 800 801
        if self._seed == 0:
            self._seed = block.program.random_seed

802
        # to be compatible of fp16 initalizers
803 804
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
805
            out_dtype = VarDesc.VarType.FP32
806 807 808 809 810 811
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['masra_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
812 813 814 815
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
816
        if framework._non_static_mode():
817
            if self._uniform:
818 819
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                limit = gain * math.sqrt(3.0 / float(fan_in))
820 821 822 823 824 825 826 827
                if in_dygraph_mode():
                    out_var = _C_ops.uniform_random(var.shape, out_dtype,
                                                    -limit, limit, self._seed,
                                                    _current_expected_place())
                else:
                    out_var = _legacy_C_ops.uniform_random(
                        'shape', out_var.shape, 'min', -limit, 'max', limit,
                        'seed', self._seed, 'dtype', int(out_dtype))
828
            else:
829 830
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                std = gain / math.sqrt(float(fan_in))
831 832
                if in_dygraph_mode():
                    place = _current_expected_place()
833 834 835
                    out_var = _C_ops.gaussian_random(out_var.shape, 0.0, std,
                                                     self._seed, out_dtype,
                                                     place)
836
                else:
837 838 839
                    out_var = _legacy_C_ops.gaussian_random(
                        'shape', out_var.shape, 'dtype', int(out_dtype), 'mean',
                        0.0, 'std', std, 'seed', self._seed)
840 841 842

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
843 844 845 846 847 848
                if in_dygraph_mode():
                    var_tmp = _C_ops.cast(out_var, var.dtype)
                elif _in_legacy_dygraph():
                    var_tmp = _legacy_C_ops.cast(out_var, 'in_dtype',
                                                 out_var.dtype, 'out_dtype',
                                                 var.dtype)
849
                var_tmp._share_underline_tensor_to(var)
850
            else:
851
                out_var._share_underline_tensor_to(var)
852
            return None
853
        else:
854
            if self._uniform:
855 856
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                limit = gain * math.sqrt(3.0 / float(fan_in))
857 858 859 860 861 862 863 864 865 866 867
                op = block.append_op(type="uniform_random",
                                     inputs={},
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": int(out_dtype),
                                         "min": -limit,
                                         "max": limit,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
868 869

            else:
870 871
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                std = gain / math.sqrt(float(fan_in))
872 873 874 875 876 877 878 879 880 881
                op = block.append_op(type="gaussian_random",
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": int(out_dtype),
                                         "mean": 0.0,
                                         "std": std,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
882 883 884

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
885 886 887 888 889 890 891
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
892

893
            var.op = op
894
            return op
895 896


897
class BilinearInitializer(Initializer):
898
    """
899 900 901
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
902 903 904 905 906

    Examples:

        .. code-block:: python

907
            import math
908 909 910 911 912

            import paddle
            import paddle.nn as nn
            from paddle.regularizer import L2Decay

X
xsrobin 已提交
913 914
            factor = 2
            C = 2
D
Double_V 已提交
915 916
            B = 8
            H = W = 32
917 918 919 920
            w_attr = paddle.ParamAttr(learning_rate=0.,
                                      regularizer=L2Decay(0.),
                                      initializer=nn.initializer.Bilinear())
            data = paddle.rand([B, 3, H, W], dtype='float32')
C
cnn 已提交
921
            conv_up = nn.Conv2DTranspose(3,
922 923 924 925 926 927 928 929 930 931 932
                                         out_channels=C,
                                         kernel_size=2 * factor - factor % 2,
                                         padding=int(
                                             math.ceil((factor - 1) / 2.)),
                                         stride=factor,
                                         weight_attr=w_attr,
                                         bias_attr=False)
            x = conv_up(data)

    Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
    convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
933 934 935 936
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
937 938
    interpolation unchanged during training.

939 940 941 942 943 944 945
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

946
    def forward(self, var, block=None):
947
        """Initialize the input tensor with Bilinear initialization.
948 949

        Args:
950 951 952
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
953 954

        Returns:
955
            The initialization op
956
        """
957 958
        block = self._check_block(block)

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

983
        # to be compatible of fp16 initalizers
984 985 986
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
987
            out_dtype = VarDesc.VarType.FP32
988 989 990 991 992 993
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['bilinear_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
994 995 996 997 998
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
999 1000 1001
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
1002 1003
            raise TypeError("Unsupported dtype %s", var.dtype)

1004 1005
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
1006

J
Jiabin Yang 已提交
1007
        if framework._non_static_mode():
1008 1009 1010 1011 1012 1013 1014
            if in_dygraph_mode():
                _C_ops.assign_value_(out_var, list(shape), out_dtype, values,
                                     _current_expected_place())
            elif _in_legacy_dygraph():
                _legacy_C_ops.assign_value(out_var, 'shape', list(shape),
                                           'dtype', out_dtype, value_name,
                                           values)
1015 1016 1017 1018
            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
1019 1020 1021 1022 1023 1024
                if in_dygraph_mode():
                    var_tmp = _C_ops.cast(out_var, var.dtype)
                elif _in_legacy_dygraph():
                    var_tmp = _legacy_C_ops.cast(out_var, 'in_dtype',
                                                 out_var.dtype, 'out_dtype',
                                                 var.dtype)
1025
                var_tmp._share_underline_tensor_to(var)
1026
            else:
1027
                out_var._share_underline_tensor_to(var)
1028 1029
            return None
        else:
1030 1031 1032 1033 1034 1035 1036
            op = block.append_op(type='assign_value',
                                 outputs={'Out': [out_var]},
                                 attrs={
                                     'dtype': out_dtype,
                                     'shape': list(shape),
                                     value_name: values
                                 })
1037 1038 1039 1040 1041

            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
1042 1043 1044 1045 1046 1047 1048
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
1049

1050
            var.op = op
1051
            return op
1052 1053


1054 1055
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
1056
    This op initialize the variable by numpy array.
1057 1058 1059 1060

    Args:
        value (numpy): numpy array to initialize the variable

1061 1062 1063
    Returns:
        A Tensor variable initialized by numpy.

1064 1065 1066
    Examples:
        .. code-block:: python

1067
            import paddle.fluid as fluid
1068 1069
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

1080
    def forward(self, var, block=None):
1081
        """Initialize the input tensor with Numpy array.
1082 1083

        Args:
1084 1085 1086
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
1087 1088

        Returns:
1089
            The initialization op
1090
        """
1091 1092
        block = self._check_block(block)

1093 1094
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
1095 1096

        # to be compatible of fp16 initalizers
1097
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
1098 1099
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
1100 1101 1102 1103 1104 1105
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['numpy_array_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
1106 1107 1108 1109 1110 1111
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

        if out_dtype == VarDesc.VarType.FP32:
1112
            value_name = "fp32_values"
1113 1114
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
1115
            value_name = "int32_values"
1116
            values = [int(v) for v in np_value.flat]
1117 1118
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
1119
        if self._value.size > 1024 * 1024 * 1024:
1120 1121
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
1122

J
Jiabin Yang 已提交
1123
        if framework._non_static_mode():
1124 1125 1126 1127 1128 1129 1130 1131
            if in_dygraph_mode():
                _C_ops.assign_value_(out_var,
                                     list(self._value.shape), out_dtype, values,
                                     _current_expected_place())
            elif _in_legacy_dygraph():
                _legacy_C_ops.assign_value(out_var, 'shape',
                                           list(self._value.shape), 'dtype',
                                           out_dtype, value_name, values)
1132
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
1133 1134 1135 1136 1137 1138
                if in_dygraph_mode():
                    var_tmp = _C_ops.cast(out_var, var.dtype)
                elif _in_legacy_dygraph():
                    var_tmp = _legacy_C_ops.cast(out_var, 'in_dtype',
                                                 out_var.dtype, 'out_dtype',
                                                 var.dtype)
1139
                var_tmp._share_underline_tensor_to(var)
1140
            else:
1141
                out_var._share_underline_tensor_to(var)
1142 1143
            return None
        else:
1144 1145 1146 1147 1148 1149 1150 1151
            op = block.append_op(type='assign_value',
                                 outputs={'Out': out_var},
                                 attrs={
                                     'dtype': out_dtype,
                                     'shape': list(self._value.shape),
                                     value_name: values
                                 },
                                 stop_gradient=True)
1152 1153

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
1154 1155 1156 1157 1158 1159 1160
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
1161

1162
            var.op = op
1163
            return op
1164 1165


1166 1167 1168 1169 1170 1171
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

1172
    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond
1173
    to ``paddle.ParamAttr`` , which is inherited from ``paddle.Tensor`` , and is a persistable Variable.
1174
    This API only takes effect for model parameters, not for variables created through apis such as
1175
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
1176

1177 1178 1179 1180 1181 1182 1183
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
1184
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters.
1185 1186 1187 1188 1189 1190 1191 1192
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python

1193 1194 1195 1196 1197
            import paddle
            import paddle.nn as nn

            nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant())
            x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
1198 1199 1200

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
1201 1202
            conv1 = nn.Conv2D(4, 6, (3, 3))
            y_var1 = conv1(x_var)
1203 1204 1205 1206

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
1207
            conv2 = nn.Conv2D(4, 6, (3, 3),
1208 1209 1210
                weight_attr=nn.initializer.XavierUniform(),
                bias_attr=nn.initializer.Normal())
            y_var2 = conv2(x_var)
1211 1212

            # Cancel the global initializer in framework, it will takes effect in subsequent code
1213
            nn.initializer.set_global_initializer(None)
1214
    """
1215

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
    check_type(weight_init, 'weight_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

    check_type(bias_init, 'bias_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


1241 1242
def calculate_gain(nonlinearity, param=None):
    """
1243
    Get the recommended ``gain`` value of some nonlinearity function. ``gain`` value can be used in some
1244
    ``paddle.nn.initializer`` api to adjust the initialization value.
1245 1246

    Args:
1247
        nonlinearity(str): name of nonlinearity activation function. If it is a linear function, such as:
1248
            `linear/conv1d/conv2d/conv3d/conv1d_transpose/conv2d_transpose/conv3d_transpose` , 1.0 will be returned.
1249
        param(bool|int|float, optional): optional parameter for somme nonlinearity function. Now, it only applies to
1250
            'leaky_relu'. Default: None, it will be calculated as 0.01 in the formula.
1251 1252

    Returns:
1253
        A float value, which is the recommended gain for this nonlinearity function.
1254 1255 1256

    Examples:
        .. code-block:: python
1257

1258 1259 1260
            import paddle
            gain = paddle.nn.initializer.calculate_gain('tanh') # 5.0 / 3
            gain = paddle.nn.initializer.calculate_gain('leaky_relu', param=1.0) # 1.0 = math.sqrt(2.0 / (1+param^2))
1261
            initializer = paddle.nn.initializer.Orthogonal(gain)
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

    """
    if param is None:
        param = 0.01
    else:
        assert isinstance(param, (bool, int, float))
        param = float(param)
    recommended_gain = {
        'sigmoid': 1,
        'linear': 1,
        'conv1d': 1,
        'conv2d': 1,
        'conv3d': 1,
1275 1276 1277
        'conv1d_transpose': 1,
        'conv2d_transpose': 1,
        'conv3d_transpose': 1,
1278 1279 1280 1281 1282 1283 1284 1285
        'tanh': 5.0 / 3,
        'relu': math.sqrt(2.0),
        'leaky_relu': math.sqrt(2.0 / (1 + param**2)),
        'selu': 3.0 / 4
    }
    if nonlinearity in recommended_gain.keys():
        return recommended_gain[nonlinearity]
    else:
1286 1287 1288
        raise ValueError(
            "nonlinearity function {} is not suppported now.".format(
                nonlinearity))
1289 1290


1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1303
TruncatedNormal = TruncatedNormalInitializer
1304 1305
Xavier = XavierInitializer
MSRA = MSRAInitializer
1306
Bilinear = BilinearInitializer