evaluator.py 17.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

D
dzhwinter 已提交
17
import warnings
D
Dong Zhihong 已提交
18
import numpy as np
武毅 已提交
19

20 21 22 23 24
from . import layers
from .framework import Program, Variable, program_guard
from . import unique_name
from .layer_helper import LayerHelper
from .initializer import Constant
25
from .layers import detection
武毅 已提交
26

27 28
__all__ = [
    'ChunkEvaluator',
29
    'EditDistance',
30
    'DetectionMAP',
31
]
Y
Yu Yang 已提交
32 33 34


def _clone_var_(block, var):
D
Dong Zhihong 已提交
35
    assert isinstance(var, Variable)
36 37 38 39 40 41
    return block.create_var(name=var.name,
                            shape=var.shape,
                            dtype=var.dtype,
                            type=var.type,
                            lod_level=var.lod_level,
                            persistable=True)
D
Dong Zhihong 已提交
42 43


D
Dong Zhihong 已提交
44 45
class Evaluator(object):
    """
46 47 48 49 50 51
    Warning: better to use the fluid.metrics.* things, more
    flexible support via pure Python and Operator, and decoupled
    with executor. Short doc are intended to urge new user
    start from Metrics.

    Base Class for all evaluators.
52

Y
Yu Yang 已提交
53
    Args:
54
        name(str): The name of evaluator. such as, "accuracy". Used for generate
Y
Yu Yang 已提交
55
            temporary variable name.
56
        main_program(Program, optional): The evaluator should be added to this
Y
Yu Yang 已提交
57
            main_program. Default default_main_program()
58
        startup_program(Program, optional):The parameter should be added to this
Y
Yu Yang 已提交
59
            startup_program. Default default_startup_program()
60

Y
Yu Yang 已提交
61
    Attributes:
62
        states(list): The list of state variables. states will be reset to zero
Y
Yu Yang 已提交
63
            when `reset` is invoked.
64
        metrics(list): The list of metrics variables. They will be calculate
Y
Yu Yang 已提交
65
            every mini-batch
D
Dong Zhihong 已提交
66
    """
武毅 已提交
67

D
Dong Zhihong 已提交
68
    def __init__(self, name, **kwargs):
D
dzhwinter 已提交
69 70 71
        warnings.warn(
            "The %s is deprecated, because maintain a modified program inside evaluator cause bug easily, please use fluid.metrics.%s instead."
            % (self.__class__.__name__, self.__class__.__name__), Warning)
Y
Yu Yang 已提交
72 73 74 75 76
        self.states = []
        self.metrics = []
        self.helper = LayerHelper(name, **kwargs)

    def reset(self, executor, reset_program=None):
D
Dong Zhihong 已提交
77
        """
Y
Yu Yang 已提交
78
        reset metric states at the begin of each pass/user specified batch
79 80 81 82

        Args:
            executor(Executor|ParallelExecutor): a executor for executing the reset_program
            reset_program(Program): a single Program for reset process
D
Dong Zhihong 已提交
83
        """
Y
Yu Yang 已提交
84 85 86
        if reset_program is None:
            reset_program = Program()

87 88 89 90
        with program_guard(main_program=reset_program):
            for var in self.states:
                assert isinstance(var, Variable)
                g_var = _clone_var_(reset_program.current_block(), var)
91 92 93 94
                layers.fill_constant(shape=g_var.shape,
                                     value=0.0,
                                     dtype=g_var.dtype,
                                     out=g_var)
D
Dong Zhihong 已提交
95

Y
Yu Yang 已提交
96
        executor.run(reset_program)
97

Y
Yu Yang 已提交
98
    def eval(self, executor, eval_program=None):
D
Dong Zhihong 已提交
99
        """
Y
Yu Yang 已提交
100
        Evaluate the statistics merged by multiple mini-batches.
101 102 103
        Args:
            executor(Executor|ParallelExecutor): a executor for executing the eval_program
            eval_program(Program): a single Program for eval process
D
Dong Zhihong 已提交
104 105
        """
        raise NotImplementedError()
D
Dong Zhihong 已提交
106

107
    def _create_state(self, suffix, dtype, shape):
武毅 已提交
108
        """
109 110
        Create state variable.

Y
Yu Yang 已提交
111
        Args:
112
            suffix(str): the state suffix.
113
            dtype(str|core.VarDesc.VarType): the state data type
114
            shape(tuple|list): the shape of state
Y
Yu Yang 已提交
115 116

        Returns: State variable
武毅 已提交
117

D
Dong Zhihong 已提交
118
        """
119 120 121 122 123
        state = self.helper.create_variable(name="_".join(
            [unique_name.generate(self.helper.name), suffix]),
                                            persistable=True,
                                            dtype=dtype,
                                            shape=shape)
Y
Yu Yang 已提交
124 125
        self.states.append(state)
        return state
D
Dong Zhihong 已提交
126

D
Dong Zhihong 已提交
127

G
guosheng 已提交
128 129
class ChunkEvaluator(Evaluator):
    """
130
    Warning: This would be deprecated in the future. Please use fluid.metrics.ChunkEvaluator
131 132
    instead.

133 134
    Accumulate counter numbers output by chunk_eval from mini-batches and
    compute the precision recall and F1-score using the accumulated counter
G
guosheng 已提交
135
    numbers.
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    Args:
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): can be IOB/IOE/IOBES and IO. See the chunk_eval op for details.
        num_chunk_types (int): the number of chunk type.
        excluded_chunk_types (list): A list including chunk type ids, indicating chunk types that are not counted.

    Returns:
        tuple: tuple containing: precision, recall, f1_score

    Examples:
        .. code-block:: python

            exe = fluid.executor(place)
            evaluator = fluid.Evaluator.ChunkEvaluator(input, label)
            for epoch in PASS_NUM:
                evaluator.reset(exe)
                for data in batches:
                    loss = exe.run(fetch_list=[cost])
                distance, instance_error = distance_evaluator.eval(exe)
G
guosheng 已提交
159 160
    """

161
    def __init__(
162 163 164 165 166 167 168
        self,
        input,
        label,
        chunk_scheme,
        num_chunk_types,
        excluded_chunk_types=None,
    ):
169
        super(ChunkEvaluator, self).__init__("chunk_eval")
G
guosheng 已提交
170 171 172 173
        main_program = self.helper.main_program
        if main_program.current_block().idx != 0:
            raise ValueError("You can only invoke Evaluator in root block")

174 175 176 177 178 179
        self.num_infer_chunks = self._create_state(dtype='int64',
                                                   shape=[1],
                                                   suffix='num_infer_chunks')
        self.num_label_chunks = self._create_state(dtype='int64',
                                                   shape=[1],
                                                   suffix='num_label_chunks')
180
        self.num_correct_chunks = self._create_state(
G
guosheng 已提交
181 182 183 184 185 186
            dtype='int64', shape=[1], suffix='num_correct_chunks')
        precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks = layers.chunk_eval(
            input=input,
            label=label,
            chunk_scheme=chunk_scheme,
            num_chunk_types=num_chunk_types,
187 188 189 190 191 192 193 194
            excluded_chunk_types=excluded_chunk_types,
        )
        layers.sums(input=[self.num_infer_chunks, num_infer_chunks],
                    out=self.num_infer_chunks)
        layers.sums(input=[self.num_label_chunks, num_label_chunks],
                    out=self.num_label_chunks)
        layers.sums(input=[self.num_correct_chunks, num_correct_chunks],
                    out=self.num_correct_chunks)
G
guosheng 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

        self.metrics.extend([precision, recall, f1_score])

    def eval(self, executor, eval_program=None):
        if eval_program is None:
            eval_program = Program()
        block = eval_program.current_block()
        num_infer_chunks, num_label_chunks, num_correct_chunks = executor.run(
            eval_program,
            fetch_list=[_clone_var_(block, state) for state in self.states])
        num_infer_chunks = num_infer_chunks[0]
        num_label_chunks = num_label_chunks[0]
        num_correct_chunks = num_correct_chunks[0]
        precision = float(
            num_correct_chunks) / num_infer_chunks if num_infer_chunks else 0
        recall = float(
            num_correct_chunks) / num_label_chunks if num_label_chunks else 0
        f1_score = float(2 * precision * recall) / (
            precision + recall) if num_correct_chunks else 0
214 215
        return np.array([precision], dtype='float32'), np.array(
            [recall], dtype='float32'), np.array([f1_score], dtype='float32')
216 217 218 219


class EditDistance(Evaluator):
    """
220 221
    Warning: This would be deprecated in the future. Please use fluid.metrics.EditDistance
    instead.
W
wanghaoshuang 已提交
222
    Accumulate edit distance sum and sequence number from mini-batches and
223
    compute the average edit_distance and instance error of all batches.
W
wanghaoshuang 已提交
224 225

    Args:
W
wanghaoshuang 已提交
226
        input: the sequences predicted by network.
Z
zhangchunle 已提交
227
        label: the target sequences which must have same sequence count
W
wanghaoshuang 已提交
228 229 230 231
        with input.
        ignored_tokens(list of int): Tokens that should be removed before
        calculating edit distance.

232 233
    Examples:
        .. code-block:: python
W
wanghaoshuang 已提交
234

235 236 237 238 239 240 241
            exe = fluid.executor(place)
            distance_evaluator = fluid.Evaluator.EditDistance(input, label)
            for epoch in PASS_NUM:
                distance_evaluator.reset(exe)
                for data in batches:
                    loss = exe.run(fetch_list=[cost])
                distance, instance_error = distance_evaluator.eval(exe)
W
wanghaoshuang 已提交
242 243

        In the above example:
244
        'distance' is the average of the edit distance in a pass.
245
        'instance_error' is the instance error rate in a pass.
W
wanghaoshuang 已提交
246

247 248
    """

W
wanghaoshuang 已提交
249
    def __init__(self, input, label, ignored_tokens=None, **kwargs):
250 251 252 253 254
        super(EditDistance, self).__init__("edit_distance", **kwargs)
        main_program = self.helper.main_program
        if main_program.current_block().idx != 0:
            raise ValueError("You can only invoke Evaluator in root block")

255 256 257 258 259 260 261 262 263 264 265 266
        self.total_distance = self._create_state(dtype='float32',
                                                 shape=[1],
                                                 suffix='total_distance')
        self.seq_num = self._create_state(dtype='int64',
                                          shape=[1],
                                          suffix='seq_num')
        self.instance_error = self._create_state(dtype='int64',
                                                 shape=[1],
                                                 suffix='instance_error')
        distances, seq_num = layers.edit_distance(input=input,
                                                  label=label,
                                                  ignored_tokens=ignored_tokens)
267 268 269

        zero = layers.fill_constant(shape=[1], value=0.0, dtype='float32')
        compare_result = layers.equal(distances, zero)
270
        compare_result_int = layers.cast(x=compare_result, dtype='int64')
271
        seq_right_count = layers.reduce_sum(compare_result_int)
272 273
        instance_error_count = layers.elementwise_sub(x=seq_num,
                                                      y=seq_right_count)
274
        total_distance = layers.reduce_sum(distances)
275 276
        layers.sums(input=[self.total_distance, total_distance],
                    out=self.total_distance)
277
        layers.sums(input=[self.seq_num, seq_num], out=self.seq_num)
278 279
        layers.sums(input=[self.instance_error, instance_error_count],
                    out=self.instance_error)
280
        self.metrics.append(total_distance)
281
        self.metrics.append(instance_error_count)
282 283 284 285 286 287

    def eval(self, executor, eval_program=None):
        if eval_program is None:
            eval_program = Program()
        block = eval_program.current_block()
        with program_guard(main_program=eval_program):
288
            total_distance = _clone_var_(block, self.total_distance)
289
            seq_num = _clone_var_(block, self.seq_num)
290
            instance_error = _clone_var_(block, self.instance_error)
291
            seq_num = layers.cast(x=seq_num, dtype='float32')
292
            instance_error = layers.cast(x=instance_error, dtype='float32')
293
            avg_distance = layers.elementwise_div(x=total_distance, y=seq_num)
294 295 296 297
            avg_instance_error = layers.elementwise_div(x=instance_error,
                                                        y=seq_num)
            result = executor.run(eval_program,
                                  fetch_list=[avg_distance, avg_instance_error])
298
        return np.array(result[0]), np.array(result[1])
299 300 301 302


class DetectionMAP(Evaluator):
    """
303 304
    Warning: This would be deprecated in the future. Please use fluid.metrics.DetectionMAP
    instead.
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    Calculate the detection mean average precision (mAP).

    The general steps are as follows:
    1. calculate the true positive and false positive according to the input
        of detection and labels.
    2. calculate mAP value, support two versions: '11 point' and 'integral'.

    Please get more information from the following articles:
      https://sanchom.wordpress.com/tag/average-precision/
      https://arxiv.org/abs/1512.02325

    Args:
        input (Variable): The detection results, which is a LoDTensor with shape
            [M, 6]. The layout is [label, confidence, xmin, ymin, xmax, ymax].
        gt_label (Variable): The ground truth label index, which is a LoDTensor
320
            with shape [N, 1].
321
        gt_box (Variable): The ground truth bounding box (bbox), which is a
322
            LoDTensor with shape [N, 4]. The layout is [xmin, ymin, xmax, ymax].
323 324 325
        gt_difficult (Variable|None): Whether this ground truth is a difficult
            bounding bbox, which can be a LoDTensor [N, 1] or not set. If None,
            it means all the ground truth labels are not difficult bbox.
326 327 328
        class_num (int): The class number.
        background_label (int): The index of background label, the background
            label will be ignored. If set to -1, then all categories will be
翟飞跃 已提交
329
            considered, 0 by default.
330
        overlap_threshold (float): The threshold for deciding true/false
翟飞跃 已提交
331
            positive, 0.5 by default.
332
        evaluate_difficult (bool): Whether to consider difficult ground truth
翟飞跃 已提交
333
            for evaluation, True by default. This argument does not work when
334
            gt_difficult is None.
335 336 337 338 339 340
        ap_version (string): The average precision calculation ways, it must be
            'integral' or '11point'. Please check
            https://sanchom.wordpress.com/tag/average-precision/ for details.
            - 11point: the 11-point interpolated average precision.
            - integral: the natural integral of the precision-recall curve.

341 342
    Examples:
        .. code-block:: python
343

344 345 346 347 348 349 350 351 352
            exe = fluid.executor(place)
            map_evaluator = fluid.Evaluator.DetectionMAP(input,
                gt_label, gt_box, gt_difficult)
            cur_map, accum_map = map_evaluator.get_map_var()
            fetch = [cost, cur_map, accum_map]
            for epoch in PASS_NUM:
                map_evaluator.reset(exe)
                for data in batches:
                    loss, cur_map_v, accum_map_v = exe.run(fetch_list=fetch)
353 354 355 356 357 358 359 360 361 362 363

        In the above example:

        'cur_map_v' is the mAP of current mini-batch.
        'accum_map_v' is the accumulative mAP of one pass.
    """

    def __init__(self,
                 input,
                 gt_label,
                 gt_box,
364 365
                 gt_difficult=None,
                 class_num=None,
366
                 background_label=0,
367 368 369 370 371 372
                 overlap_threshold=0.5,
                 evaluate_difficult=True,
                 ap_version='integral'):
        super(DetectionMAP, self).__init__("map_eval")

        gt_label = layers.cast(x=gt_label, dtype=gt_box.dtype)
373 374 375 376 377
        if gt_difficult:
            gt_difficult = layers.cast(x=gt_difficult, dtype=gt_box.dtype)
            label = layers.concat([gt_label, gt_difficult, gt_box], axis=1)
        else:
            label = layers.concat([gt_label, gt_box], axis=1)
378 379

        # calculate mean average precision (mAP) of current mini-batch
380 381 382 383 384 385 386
        map = detection.detection_map(input,
                                      label,
                                      class_num,
                                      background_label,
                                      overlap_threshold=overlap_threshold,
                                      evaluate_difficult=evaluate_difficult,
                                      ap_version=ap_version)
387

388 389
        self._create_state(dtype='int32', shape=None, suffix='accum_pos_count')
        self._create_state(dtype='float32', shape=None, suffix='accum_true_pos')
390 391 392
        self._create_state(dtype='float32',
                           shape=None,
                           suffix='accum_false_pos')
393 394

        self.has_state = None
395 396 397 398 399
        var = self.helper.create_variable(persistable=True,
                                          dtype='int32',
                                          shape=[1])
        self.helper.set_variable_initializer(var,
                                             initializer=Constant(value=int(0)))
400 401 402
        self.has_state = var

        # calculate accumulative mAP
403
        accum_map = detection.detection_map(
404 405
            input,
            label,
406 407
            class_num,
            background_label,
408 409 410 411 412 413 414
            overlap_threshold=overlap_threshold,
            evaluate_difficult=evaluate_difficult,
            has_state=self.has_state,
            input_states=self.states,
            out_states=self.states,
            ap_version=ap_version)

415 416 417 418
        layers.fill_constant(shape=self.has_state.shape,
                             value=1,
                             dtype=self.has_state.dtype,
                             out=self.has_state)
419 420 421 422 423 424 425 426 427 428 429 430

        self.cur_map = map
        self.accum_map = accum_map

    def get_map_var(self):
        return self.cur_map, self.accum_map

    def reset(self, executor, reset_program=None):
        if reset_program is None:
            reset_program = Program()
        with program_guard(main_program=reset_program):
            var = _clone_var_(reset_program.current_block(), self.has_state)
431 432 433 434
            layers.fill_constant(shape=var.shape,
                                 value=0,
                                 dtype=var.dtype,
                                 out=var)
435
        executor.run(reset_program)