index_sample_op.cu 9.5 KB
Newer Older
C
Chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/op_registry.h"
C
Chengmo 已提交
16
#include "paddle/fluid/operators/index_sample_op.h"
17
#include "paddle/fluid/operators/math/math_function.h"
18
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
19
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
20

21 22 23 24
#define PREDEFINED_BLOCK_SIZE_X 512
#define PREDEFINED_BLOCK_SIZE 1024
#define MIN(a, b) ((a) < (b) ? (a) : (b))

25 26 27
namespace paddle {
namespace operators {

28 29 30 31 32 33 34 35 36
namespace {
void LimitGridDim(const framework::ExecutionContext& ctx, dim3* grid_dim) {
  dim3 max_grid_dim = ctx.template device_context<platform::CUDADeviceContext>()
                          .GetCUDAMaxGridDimSize();
  grid_dim->x = grid_dim->x < max_grid_dim.x ? grid_dim->x : max_grid_dim.x;
  grid_dim->y = grid_dim->y < max_grid_dim.y ? grid_dim->y : max_grid_dim.y;
}
}

37 38 39 40 41 42 43
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

template <typename T, typename IndexT = int>
__global__ void IndexSampleForward(const IndexT* index, const T* in_data,
                                   T* out_data, size_t index_length,
                                   size_t input_length, size_t batch_size) {
44 45 46 47 48 49 50 51 52
  unsigned int index_i = blockDim.x * blockIdx.x + threadIdx.x;
  unsigned int index_j = blockDim.y * blockIdx.y + threadIdx.y;
  for (; index_j < batch_size; index_j += blockDim.y * gridDim.y) {
    for (; index_i < index_length; index_i += blockDim.x * gridDim.x) {
      unsigned int index_idx = index_j * index_length + index_i;
      unsigned int in_idx = index_j * input_length + index_i;
      IndexT sample_idx = index[index_idx];
      out_data[index_idx] = in_data[in_idx - index_i + sample_idx];
    }
53 54 55 56 57 58 59 60
  }
}

template <typename T, typename IndexT = int>
__global__ void IndexSampleGrad(const IndexT* index, T* in_grad,
                                const T* out_grad, size_t index_length,
                                size_t input_length, size_t batch_size,
                                bool same_data_in_row = true) {
61 62 63 64 65 66 67 68 69 70 71 72 73 74
  unsigned int index_i = blockDim.x * blockIdx.x + threadIdx.x;
  unsigned int index_j = blockDim.y * blockIdx.y + threadIdx.y;

  for (; index_j < batch_size; index_j += blockDim.y * gridDim.y) {
    for (; index_i < index_length; index_i += blockDim.x * gridDim.x) {
      unsigned int index_idx = index_j * index_length + index_i;
      unsigned int in_idx = index_j * input_length + index_i;
      IndexT sample_idx = index[index_idx];
      if (same_data_in_row) {
        platform::CudaAtomicAdd(&(in_grad[in_idx - index_i + sample_idx]),
                                out_grad[sample_idx]);
      } else {
        in_grad[in_idx - index_i + sample_idx] = out_grad[index_idx];
      }
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    }
  }
}

template <typename T>
class IndexSampleKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<LoDTensor>("X");
    auto* index = ctx.Input<LoDTensor>("Index");
    auto* output = ctx.Output<LoDTensor>("Out");

    const auto& index_type = index->type();
    bool index_type_match = index_type == framework::proto::VarType::INT64 ||
                            index_type == framework::proto::VarType::INT32;
    PADDLE_ENFORCE_EQ(index_type_match, true,
                      platform::errors::InvalidArgument(
                          "Input(Index) holds the wrong type, it holds %s, but "
                          "desires to be %s or %s",
                          paddle::framework::DataTypeToString(index_type),
                          paddle::framework::DataTypeToString(
                              framework::proto::VarType::INT32),
                          paddle::framework::DataTypeToString(
                              framework::proto::VarType::INT64)));
    const auto* in_data = input->data<T>();
    auto* out_data = output->mutable_data<T>(ctx.GetPlace());
    auto stream =
        ctx.template device_context<platform::CUDADeviceContext>().stream();

    auto input_dim = input->dims();
    auto index_dim = index->dims();
    size_t batch_size = input_dim[0];
    size_t input_length = input_dim[1];
    size_t index_length = index_dim[1];

    auto block_width = platform::RoundToPowerOfTwo(index_length);
112
    block_width = MIN(block_width, PREDEFINED_BLOCK_SIZE_X);
113 114
    int block_height =
        platform::RoundToPowerOfTwo(index_length * batch_size) / block_width;
115
    block_height = MIN(block_height, PREDEFINED_BLOCK_SIZE / block_width);
116 117 118
    dim3 block_dim(block_width, block_height);
    dim3 grid_dim((index_length + block_dim.x - 1) / block_dim.x,
                  (batch_size + block_dim.y - 1) / block_dim.y);
119
    LimitGridDim(ctx, &grid_dim);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

    if (index_type == framework::proto::VarType::INT64) {
      const int64_t* index_data = index->data<int64_t>();
      IndexSampleForward<T, int64_t><<<grid_dim, block_dim, 0, stream>>>(
          index_data, in_data, out_data, index_length, input_length,
          batch_size);
    } else if (index_type == framework::proto::VarType::INT32) {
      const int* index_data = index->data<int>();
      IndexSampleForward<T, int><<<grid_dim, block_dim, 0, stream>>>(
          index_data, in_data, out_data, index_length, input_length,
          batch_size);
    }
  }
};

template <typename T>
class IndexSampleGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* output_grad = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* input_grad = ctx.Output<LoDTensor>(framework::GradVarName("X"));
    auto* index = ctx.Input<LoDTensor>("Index");

    const auto* output_grad_data = output_grad->data<T>();
    auto* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());

    const auto& index_type = index->type();
    bool index_type_match = index_type == framework::proto::VarType::INT64 ||
                            index_type == framework::proto::VarType::INT32;
    PADDLE_ENFORCE_EQ(index_type_match, true,
                      platform::errors::InvalidArgument(
                          "Input(Index) holds the wrong type, it holds %s, but "
                          "desires to be %s or %s",
                          paddle::framework::DataTypeToString(index_type),
                          paddle::framework::DataTypeToString(
                              framework::proto::VarType::INT32),
                          paddle::framework::DataTypeToString(
                              framework::proto::VarType::INT64)));

    auto stream =
        ctx.template device_context<platform::CUDADeviceContext>().stream();
    auto input_num = input_grad->numel();
    auto input_dim = input_grad->dims();
    auto index_dim = index->dims();
    size_t batch_size = index_dim[0];
    size_t input_length = input_dim[1];
    size_t index_length = index_dim[1];
    bool same_data_in_index_row = index_length == 1 ? false : true;

    auto block_width = platform::RoundToPowerOfTwo(index_length);
171
    block_width = MIN(block_width, PREDEFINED_BLOCK_SIZE_X);
172 173
    auto block_height =
        platform::RoundToPowerOfTwo(index_length * batch_size) / block_width;
174
    block_height = MIN(block_height, PREDEFINED_BLOCK_SIZE / block_width);
175 176 177
    dim3 block_dim(block_width, block_height);
    dim3 grid_dim((index_length + block_dim.x - 1) / block_dim.x,
                  (batch_size + block_dim.y - 1) / block_dim.y);
178
    LimitGridDim(ctx, &grid_dim);
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

    math::SetConstant<platform::CUDADeviceContext, T> set_zero;
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    set_zero(dev_ctx, input_grad, static_cast<T>(0));

    if (index_type == framework::proto::VarType::INT64) {
      const int64_t* index_data = index->data<int64_t>();
      IndexSampleGrad<T, int64_t><<<grid_dim, block_dim, 0, stream>>>(
          index_data, input_grad_data, output_grad_data, index_length,
          input_length, batch_size, same_data_in_index_row);
    } else if (index_type == framework::proto::VarType::INT32) {
      const int* index_data = index->data<int>();
      IndexSampleGrad<T, int><<<grid_dim, block_dim, 0, stream>>>(
          index_data, input_grad_data, output_grad_data, index_length,
          input_length, batch_size, same_data_in_index_row);
    }
  }
};

}  // namespace operators
}  // namespace paddle
C
Chengmo 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    index_sample,
    ops::IndexSampleKernel<paddle::platform::CUDADeviceContext, float>,
    ops::IndexSampleKernel<paddle::platform::CUDADeviceContext, double>,
    ops::IndexSampleKernel<paddle::platform::CUDADeviceContext, int>,
    ops::IndexSampleKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL(
    index_sample_grad,
    ops::IndexSampleGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::IndexSampleGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::IndexSampleGradKernel<paddle::platform::CUDADeviceContext, int>,
    ops::IndexSampleGradKernel<paddle::platform::CUDADeviceContext, int64_t>);