gru_op.cc 21.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/gru_op.h"
16
#include <memory>
17
#include <string>
T
tensor-tang 已提交
18 19
#include "paddle/fluid/operators/math/detail/gru_cpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"
20
#include "paddle/phi/kernels/funcs/blas/blas.h"
T
tensor-tang 已提交
21 22

DECLARE_int32(paddle_num_threads);
G
guosheng 已提交
23 24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {

using framework::Tensor;

class GRUOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
34 35 36
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "GRU");
    OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "GRU");
    OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "GRU");
37 38 39 40 41 42 43 44
    bool is_test = ctx->Attrs().Get<bool>("is_test");
    if (!is_test) {
      OP_INOUT_CHECK(ctx->HasOutput("BatchGate"), "Output", "BatchGate", "GRU");
      OP_INOUT_CHECK(ctx->HasOutput("BatchResetHiddenPrev"), "Output",
                     "BatchResetHiddenPrev", "GRU");
      OP_INOUT_CHECK(ctx->HasOutput("BatchHidden"), "Output", "BatchHidden",
                     "GRU");
    }
G
guosheng 已提交
45 46 47 48
    auto input_dims = ctx->GetInputDim("Input");
    auto weight_dims = ctx->GetInputDim("Weight");
    int input_size = input_dims[1];
    int frame_size = weight_dims[0];
49
    if (ctx->IsRuntime()) {
50 51 52 53 54 55
      PADDLE_ENFORCE_EQ(input_size, frame_size * 3,
                        platform::errors::InvalidArgument(
                            "The second dimension of Input(Input) must be 3 "
                            "times of frame_size in GRUOp, but received %d "
                            "(Input) vs %d (frame_size).",
                            input_size, frame_size));
56
    }
G
guosheng 已提交
57 58
    PADDLE_ENFORCE_EQ(
        weight_dims[1], frame_size * 3,
59 60 61 62
        platform::errors::InvalidArgument(
            "The shape of Input(Weight) matrix must be [frame_size, frame_size "
            "* 3], but received [%d, %d] (Weight) vs [%d, %d] (frame_size).",
            weight_dims[0], weight_dims[1], frame_size, frame_size * 3));
63
    if (ctx->HasInput("H0")) {
G
guosheng 已提交
64
      auto h0_dims = ctx->GetInputDim("H0");
65 66 67 68 69 70
      PADDLE_ENFORCE_EQ(
          h0_dims[1], frame_size,
          platform::errors::InvalidArgument(
              "The width of Input(H0) must be equal to frame_size, but "
              "received %d (width of H0) vs %d (frame_size).",
              h0_dims[1], frame_size));
G
guosheng 已提交
71
    }
72
    if (ctx->HasInput("Bias")) {
G
guosheng 已提交
73 74 75
      auto bias_dims = ctx->GetInputDim("Bias");
      int bias_height = bias_dims[0];
      int bias_width = bias_dims[1];
76 77 78 79 80 81 82 83 84 85 86 87
      PADDLE_ENFORCE_EQ(
          bias_height, 1,
          platform::errors::InvalidArgument(
              "The shape of Bias must be [1, frame_size * 3], but received "
              "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
              bias_height, bias_width, frame_size * 3));
      PADDLE_ENFORCE_EQ(
          bias_width, frame_size * 3,
          platform::errors::InvalidArgument(
              "The shape of Bias must be [1, frame_size * 3], but received "
              "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
              bias_height, bias_width, frame_size * 3));
G
guosheng 已提交
88
    }
89 90 91 92 93
    if (!is_test) {
      ctx->SetOutputDim("BatchGate", input_dims);
      ctx->SetOutputDim("BatchResetHiddenPrev", {input_dims[0], frame_size});
      ctx->SetOutputDim("BatchHidden", {input_dims[0], frame_size});
    }
G
guosheng 已提交
94 95 96 97 98 99 100
    ctx->SetOutputDim("Hidden", {input_dims[0], frame_size});
    ctx->ShareLoD("Input", "Hidden");
  }
};

class GRUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
101
  void Make() override {
G
guosheng 已提交
102
    AddInput("Input",
103
             "(LoDTensor) The first input is a LodTensor, which supports "
G
guosheng 已提交
104 105 106 107
             "variable-time length input sequence. The underlying tensor in "
             "this LoDTenosr is a matrix with shape (T X 3D), where, T is the "
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
108
             "(Tensor, optional) The initial hidden state is an optional "
G
guosheng 已提交
109
             "input. This is a tensor with shape (N x D), where N is the "
110 111
             "batch size, D is the hidden size.")
        .AsDispensable();
G
guosheng 已提交
112 113
    AddInput(
        "Weight",
114 115 116 117 118
        "(Tensor) The learnable hidden-hidden weight matrix with shape "
        "(D x 3D), where D is the hidden size. The elements continuous in "
        "memory can be divided into two parts. The first part are weights of "
        "the update gate and reset gate with shape (D x 2D), and the second "
        "part are weights of output candidate with shape (D x D).");
G
guosheng 已提交
119
    AddInput("Bias",
120 121 122
             "(Tensor, optional) Bias vector with shape (1 x 3D) concating "
             "bias of the update gate, reset gate and output candidate.")
        .AsDispensable();
G
guosheng 已提交
123
    AddOutput("BatchGate",
124 125 126 127 128 129 130
              "(LoDTensor) To compute with batches, sequence data will be "
              "reorganized into several successive batches each containing "
              "data from the same time step. The LoDTensor BatchGate contains "
              "the update gate, reset gate and output candidate values "
              "organized in batches. The LoD size is 2. The first LoD contains "
              "the batch offsets and the second LoD contains the indexes in "
              "the raw sequence data.")
131 132
        .AsIntermediate()
        .AsExtra();
G
guosheng 已提交
133 134
    AddOutput(
        "BatchResetHiddenPrev",
T
tianshuo78520a 已提交
135
        "(LoDTensor) The reset hidden state LoDTensor organized in batches. "
136 137
        "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
        "with `BatchGate`.")
138 139
        .AsIntermediate()
        .AsExtra();
G
guosheng 已提交
140 141
    AddOutput(
        "BatchHidden",
142 143 144
        "(LoDTensor) The hidden state LoDTensor organized in batches.  "
        "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
        "with `BatchGate`.")
145 146
        .AsIntermediate()
        .AsExtra();
147 148 149 150 151
    AddOutput(
        "Hidden",
        "(LoDTensor) the hidden state LoDTensor organized in sequences. "
        "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
        "with `BatchGate`.");
G
guosheng 已提交
152 153 154 155 156 157 158 159 160 161
    AddAttr<std::string>("activation",
                         "(string, default tanh) "
                         "The activation type used for output candidate {h}_t.")
        .SetDefault("tanh");
    AddAttr<std::string>(
        "gate_activation",
        "(string, default sigmoid) "
        "The activation type used in update gate and reset gate.")
        .SetDefault("sigmoid");
    AddAttr<bool>("is_reverse",
翟飞跃 已提交
162
                  "(bool, default: False) "
G
guosheng 已提交
163 164
                  "whether to compute reversed GRU.")
        .SetDefault(false);
165 166 167
    AddAttr<bool>("is_test", "True if in test phase.")
        .SetDefault(false)
        .AsExtra();
Q
Qiao Longfei 已提交
168 169 170 171
    AddAttr<bool>("origin_mode",
                  "bool"
                  "use origin mode in article https://arxiv.org/abs/1412.3555")
        .SetDefault(false);
G
guosheng 已提交
172
    AddComment(R"DOC(
173 174
GRU Operator implements part calculations of the complete GRU as following:

K
kavyasrinet 已提交
175 176 177 178
$$
update\_gate: u_t = actGate(xu_t + W_u * h_{t-1} + b_u) \\
reset\_gate: r_t = actGate(xr_t + W_r * h_{t-1} + b_r)  \\
output\_candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, h_{t-1}) + b_c) \\
179
output: h_t = dot((1 - u_t), h_{t-1}) + dot(u_t, {h}_t)
K
kavyasrinet 已提交
180
$$
181

K
kavyasrinet 已提交
182
@note To implement the complete GRU, fully-connected operator must be used
183
before to feed xu, xr and xc as the Input of GRU operator.
G
guosheng 已提交
184 185 186 187 188 189 190 191 192
)DOC");
  }
};

class GRUGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
193 194 195 196 197 198 199 200 201 202 203 204
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "GRU@Grad");
    OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "GRU@Grad");
    OP_INOUT_CHECK(ctx->HasInput("BatchGate"), "Input", "BatchGate",
                   "GRU@Grad");
    OP_INOUT_CHECK(ctx->HasInput("BatchResetHiddenPrev"), "Input",
                   "BatchResetHiddenPrev", "GRU@Grad");
    OP_INOUT_CHECK(ctx->HasInput("BatchHidden"), "Input", "BatchHidden",
                   "GRU@Grad");
    OP_INOUT_CHECK(ctx->HasInput("Hidden"), "Input", "Hidden", "GRU@Grad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Hidden")), "Input",
                   framework::GradVarName("Hidden"), "GRU@Grad");

G
guosheng 已提交
205 206 207 208 209 210
    auto input_dims = ctx->GetInputDim("Input");
    auto weight_dims = ctx->GetInputDim("Weight");
    int input_size = input_dims[1];
    int frame_size = weight_dims[0];
    int weight_height = weight_dims[0];
    int weight_width = weight_dims[1];
211 212 213 214 215 216
    PADDLE_ENFORCE_EQ(
        input_size, frame_size * 3,
        platform::errors::InvalidArgument(
            "The second dimension of Input(Input) must be 3 times of "
            "frame_size in GRUOp, but received %d (Input) vs %d (frame_size).",
            input_size, frame_size));
G
guosheng 已提交
217 218
    PADDLE_ENFORCE_EQ(
        weight_height, frame_size,
219 220 221 222
        platform::errors::InvalidArgument(
            "The shape of Input(Weight) matrix must be [frame_size, frame_size "
            "* 3], but received [%d, %d] (Weight) vs [%d, %d] (frame_size).",
            weight_height, weight_width, frame_size, frame_size * 3));
G
guosheng 已提交
223 224
    PADDLE_ENFORCE_EQ(
        weight_width, frame_size * 3,
225 226 227 228
        platform::errors::InvalidArgument(
            "The shape of Input(Weight) matrix must be [frame_size, frame_size "
            "* 3], but received [%d, %d] (Weight) vs [%d, %d] (frame_size).",
            weight_height, weight_width, frame_size, frame_size * 3));
229
    if (ctx->HasInput("H0")) {
G
guosheng 已提交
230
      auto h0_dims = ctx->GetInputDim("H0");
231 232 233 234 235 236
      PADDLE_ENFORCE_EQ(
          h0_dims[1], frame_size,
          platform::errors::InvalidArgument(
              "The width of Input(H0) must be equal to frame_size, but "
              "received %d (width of H0) vs %d (frame_size).",
              h0_dims[1], frame_size));
G
guosheng 已提交
237 238 239 240
      auto h0_grad_name = framework::GradVarName("H0");
      if (ctx->HasOutput(h0_grad_name))
        ctx->SetOutputDim(h0_grad_name, h0_dims);
    }
241
    if (ctx->HasInput("Bias")) {
G
guosheng 已提交
242 243 244
      auto bias_dims = ctx->GetInputDim("Bias");
      int bias_height = bias_dims[0];
      int bias_width = bias_dims[1];
245 246 247 248 249 250 251 252 253 254 255 256
      PADDLE_ENFORCE_EQ(
          bias_height, 1,
          platform::errors::InvalidArgument(
              "The shape of Bias must be [1, frame_size * 3], but received "
              "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
              bias_height, bias_width, frame_size * 3));
      PADDLE_ENFORCE_EQ(
          bias_width, frame_size * 3,
          platform::errors::InvalidArgument(
              "The shape of Bias must be [1, frame_size * 3], but received "
              "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
              bias_height, bias_width, frame_size * 3));
G
guosheng 已提交
257 258 259 260 261 262 263 264 265 266 267
      auto bias_grad_name = framework::GradVarName("Bias");
      if (ctx->HasOutput(bias_grad_name))
        ctx->SetOutputDim(bias_grad_name, bias_dims);
    }
    auto input_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(input_grad_name))
      ctx->SetOutputDim(input_grad_name, input_dims);
    auto weight_grad_name = framework::GradVarName("Weight");
    if (ctx->HasOutput(weight_grad_name))
      ctx->SetOutputDim(weight_grad_name, weight_dims);
  }
268 269 270 271 272 273 274

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Hidden")),
                                   ctx.device_context());
  }
G
guosheng 已提交
275 276
};

277 278 279 280 281
template <typename T>
class GRUCPUKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
282 283 284
    using LodTensorPtr = LoDTensor*;
    bool is_test = context.Attr<bool>("is_test");

Q
Qiao Longfei 已提交
285
    bool origin_mode = context.Attr<bool>("origin_mode");
286 287 288 289 290 291 292 293
    auto* input = context.Input<LoDTensor>("Input");
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* bias = context.Input<Tensor>("Bias");
    auto* hidden = context.Output<LoDTensor>("Hidden");
    hidden->mutable_data<T>(context.GetPlace());

294
    auto input_dims = input->dims();
295 296
    auto hidden_dims = hidden->dims();

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    LodTensorPtr batch_gate, batch_reset_hidden_prev, batch_hidden;
    LoDTensor batch_gate_tmp, batch_reset_hidden_prev_tmp, batch_hidden_tmp;
    if (is_test) {
      batch_gate = &batch_gate_tmp;
      batch_gate->Resize(input_dims);

      batch_reset_hidden_prev = &batch_reset_hidden_prev_tmp;
      batch_reset_hidden_prev->Resize(hidden_dims);

      batch_hidden = &batch_hidden_tmp;
      batch_hidden->Resize(hidden_dims);
    } else {
      batch_gate = context.Output<LoDTensor>("BatchGate");
      batch_hidden = context.Output<LoDTensor>("BatchHidden");
      batch_reset_hidden_prev =
          context.Output<LoDTensor>("BatchResetHiddenPrev");
    }
    batch_gate->mutable_data<T>(context.GetPlace());
    batch_reset_hidden_prev->mutable_data<T>(context.GetPlace());
    batch_hidden->mutable_data<T>(context.GetPlace());

318 319 320 321 322 323
    bool is_reverse = context.Attr<bool>("is_reverse");
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
    auto& dev_ctx = context.template device_context<DeviceContext>();
    to_batch(dev_ctx, *input, batch_gate, true, is_reverse);

    if (bias) {
324
      phi::funcs::RowwiseAdd<DeviceContext, T> add_bias;
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
      add_bias(dev_ctx, *batch_gate, *bias, batch_gate);
    }

    int frame_size = hidden_dims[1];
    math::GRUMetaValue<T> gru_value;
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);
    Tensor ordered_h0;

    framework::Vector<size_t> order(batch_gate->lod()[2]);

    if (h0) {
      // Since the batch computing for GRU reorders the input sequences
      // according to their length. The initialized cell state also needs
      // to reorder.
      ReorderInitState<DeviceContext, T>(
          context.template device_context<DeviceContext>(), *h0, order,
          &ordered_h0, true);
      gru_value.prev_out_value = ordered_h0.data<T>();
    } else {
      gru_value.prev_out_value = nullptr;
    }
    auto batch_starts = batch_gate->lod()[0];
T
tensor-tang 已提交
349
    size_t seq_len = batch_starts.size() - 1;
350 351 352 353 354 355
    auto active_node = math::detail::GetActivationType(
        context.Attr<std::string>("activation"));
    auto active_gate = math::detail::GetActivationType(
        context.Attr<std::string>("gate_activation"));

#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
356
    // use MKL packed to speedup GEMM
T
tensor-tang 已提交
357
    if (FLAGS_paddle_num_threads >= 4) {
358
      auto blas = phi::funcs::GetBlas<DeviceContext, T>(dev_ctx);
T
tensor-tang 已提交
359 360 361
      T* packed_gate = blas.GEMM_ALLOC(CblasBMatrix, 1 /*height of C*/,
                                       frame_size * 2 /*width of weight*/,
                                       frame_size /*height of height*/);
362 363 364 365
      PADDLE_ENFORCE_NOT_NULL(
          packed_gate, platform::errors::NotFound(
                           "The caculation result of packed_gate by "
                           "GEMM_ALLOC should not be null when using MKL."));
T
tensor-tang 已提交
366 367 368 369 370 371
      blas.GEMM_PACK(CblasBMatrix, CblasNoTrans, 1 /*cur bs?*/, frame_size * 2,
                     frame_size, T(1.0), gru_value.gate_weight, frame_size * 2,
                     packed_gate);
      T* packed_state = blas.GEMM_ALLOC(CblasBMatrix, 1 /*height of C*/,
                                        frame_size /*width of weight*/,
                                        frame_size /*height of height*/);
372 373 374 375
      PADDLE_ENFORCE_NOT_NULL(
          packed_state, platform::errors::NotFound(
                            "The caculation result of packed_state by "
                            "GEMM_ALLOC should not be null when using MKL."));
T
tensor-tang 已提交
376 377 378 379 380 381 382
      blas.GEMM_PACK(CblasBMatrix, CblasNoTrans, 1 /*cur bs?*/, frame_size,
                     frame_size, T(1.0), gru_value.state_weight, frame_size,
                     packed_state);
      for (size_t n = 0; n < seq_len; n++) {
        int bstart = static_cast<int>(batch_starts[n]);
        int bend = static_cast<int>(batch_starts[n + 1]);
        int cur_batch_size = bend - bstart;
383

T
tensor-tang 已提交
384 385 386 387 388 389 390
        Tensor gate_t = batch_gate->Slice(bstart, bend);
        Tensor reset_hidden_prev_t =
            batch_reset_hidden_prev->Slice(bstart, bend);
        Tensor hidden_t = batch_hidden->Slice(bstart, bend);
        gru_value.output_value = hidden_t.data<T>();
        gru_value.gate_value = gate_t.data<T>();
        gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
391

T
tensor-tang 已提交
392 393 394 395 396 397
        if (gru_value.prev_out_value) {
          blas.GEMM_COMPUTE(
              CblasNoTrans, CblasPacked, cur_batch_size, frame_size * 2,
              frame_size, gru_value.prev_out_value, frame_size, packed_gate,
              frame_size * 2, T(1), gru_value.gate_value, frame_size * 3);
        }
398

T
tensor-tang 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412
        math::detail::forward_reset_output(
            math::detail::forward::gru_resetOutput<T>(), gru_value, frame_size,
            cur_batch_size, active_gate);

        if (gru_value.prev_out_value) {
          blas.GEMM_COMPUTE(
              CblasNoTrans, CblasPacked, cur_batch_size, frame_size, frame_size,
              gru_value.reset_output_value, frame_size, packed_state,
              frame_size, T(1), gru_value.gate_value + frame_size * 2,
              frame_size * 3);
        }

        math::detail::forward_final_output(
            math::detail::forward::gru_finalOutput<T>(), gru_value, frame_size,
Q
Qiao Longfei 已提交
413
            cur_batch_size, active_node, origin_mode);
T
tensor-tang 已提交
414 415

        gru_value.prev_out_value = gru_value.output_value;
416 417
      }

T
tensor-tang 已提交
418 419 420
      blas.GEMM_FREE(packed_gate);
      blas.GEMM_FREE(packed_state);
    } else {
421
#endif
T
tensor-tang 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
      for (size_t n = 0; n < seq_len; n++) {
        int bstart = static_cast<int>(batch_starts[n]);
        int bend = static_cast<int>(batch_starts[n + 1]);
        int cur_batch_size = bend - bstart;

        Tensor gate_t = batch_gate->Slice(bstart, bend);
        Tensor reset_hidden_prev_t =
            batch_reset_hidden_prev->Slice(bstart, bend);
        Tensor hidden_t = batch_hidden->Slice(bstart, bend);
        gru_value.output_value = hidden_t.data<T>();
        gru_value.gate_value = gate_t.data<T>();
        gru_value.reset_output_value = reset_hidden_prev_t.data<T>();

        math::GRUUnitFunctor<DeviceContext, T>::compute(
            dev_ctx, gru_value, frame_size, cur_batch_size, active_node,
Q
Qiao Longfei 已提交
437
            active_gate, origin_mode);
T
tensor-tang 已提交
438 439 440

        gru_value.prev_out_value = gru_value.output_value;
      }
441
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
442
    }
443 444 445 446 447 448 449 450 451 452 453
#endif
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
    batch_hidden->set_lod(batch_gate->lod());
    to_seq(dev_ctx, *batch_hidden, hidden);
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

454 455 456 457 458 459
template <typename T>
class GRUGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
460
  void Apply(GradOpPtr<T> grad_op) const override {
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
    grad_op->SetType("gru_grad");
    grad_op->SetInput("Input", this->Input("Input"));
    grad_op->SetInput("H0", this->Input("H0"));
    grad_op->SetInput("Bias", this->Input("Bias"));
    grad_op->SetInput("Weight", this->Input("Weight"));

    grad_op->SetInput("BatchGate", this->Output("BatchGate"));
    grad_op->SetInput("BatchResetHiddenPrev",
                      this->Output("BatchResetHiddenPrev"));
    grad_op->SetInput("BatchHidden", this->Output("BatchHidden"));
    grad_op->SetInput("Hidden", this->Output("Hidden"));

    grad_op->SetInput(framework::GradVarName("Hidden"),
                      this->OutputGrad("Hidden"));

    grad_op->SetOutput(framework::GradVarName("H0"), this->InputGrad("H0"));
    grad_op->SetOutput(framework::GradVarName("Input"),
                       this->InputGrad("Input"));
    grad_op->SetOutput(framework::GradVarName("Weight"),
                       this->InputGrad("Weight"));
    grad_op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));

    grad_op->SetAttrMap(this->Attrs());
  }
};

487
DECLARE_NO_NEED_BUFFER_VARS_INFERER(GRUGradOpNoNeedBufferVarInferer, "Input",
488
                                    "Bias");
489

G
guosheng 已提交
490 491 492 493
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
494 495 496 497
REGISTER_OPERATOR(gru, ops::GRUOp, ops::GRUOpMaker,
                  ops::GRUGradOpMaker<paddle::framework::OpDesc>,
                  ops::GRUGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(gru_grad, ops::GRUGradOp,
498
                  ops::GRUGradOpNoNeedBufferVarInferer);
499 500
REGISTER_OP_CPU_KERNEL(gru, ops::GRUCPUKernel<float>,
                       ops::GRUCPUKernel<double>);
Q
QI JUN 已提交
501 502 503
REGISTER_OP_CPU_KERNEL(
    gru_grad, ops::GRUGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GRUGradKernel<paddle::platform::CPUDeviceContext, double>);