generate_proposal_labels_op.cc 31.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <math.h>
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
W
whs 已提交
17
#include "paddle/fluid/framework/op_version_registry.h"
18
#include "paddle/fluid/operators/detection/bbox_util.h"
19
#include "paddle/fluid/operators/gather.h"
C
chengduo 已提交
20
#include "paddle/fluid/operators/math/concat_and_split.h"
21
#include "paddle/phi/kernels/funcs/math_function.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
const int kBoxDim = 4;

template <typename T>
void AppendRois(LoDTensor* out, int64_t offset, Tensor* to_add) {
  auto* out_data = out->data<T>();
  auto* to_add_data = to_add->data<T>();
  memcpy(out_data + offset, to_add_data, to_add->numel() * sizeof(T));
}

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
// Filter the ground-truth in RoIs and the RoIs with non-positive area.
// The ground-truth has max overlap with itself so the max_overlap is 1
// and the corresponding RoI will be removed.
template <typename T>
void FilterRoIs(const platform::DeviceContext& ctx, const Tensor& rpn_rois,
                const Tensor& max_overlap, Tensor* keep) {
  const T* rpn_rois_dt = rpn_rois.data<T>();
  const T* max_overlap_dt = max_overlap.data<T>();
  int rois_num = max_overlap.numel();
  keep->Resize({rois_num});
  int* keep_data = keep->mutable_data<int>(ctx.GetPlace());
  int keep_len = 0;
  for (int i = 0; i < rois_num; ++i) {
    if ((rpn_rois_dt[i * 4 + 2] - rpn_rois_dt[i * 4 + 0] + 1) > 0 &&
        (rpn_rois_dt[i * 4 + 3] - rpn_rois_dt[i * 4 + 1] + 1) > 0 &&
        max_overlap_dt[i] < 1.) {
      keep_data[keep_len++] = i;
    }
  }
  keep->Resize({keep_len});
}

59 60 61 62 63
class GenerateProposalLabelsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("RpnRois"), true,
        platform::errors::NotFound("Input(RpnRois) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("GtClasses"), true,
        platform::errors::NotFound("Input(GtClasses) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("IsCrowd"), true,
        platform::errors::NotFound("Input(IsCrowd) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("GtBoxes"), true,
        platform::errors::NotFound("Input(GtBoxes) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("ImInfo"), true,
        platform::errors::NotFound("Input(ImInfo) shouldn't be null."));

    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Rois"), true,
        platform::errors::NotFound(
            "Output(Rois) of GenerateProposalLabelsOp should not be null"));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("LabelsInt32"), true,
                      platform::errors::NotFound("Output(LabelsInt32) of "
                                                 "GenerateProposalLabelsOp "
                                                 "should not be null"));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("BboxTargets"), true,
                      platform::errors::NotFound("Output(BboxTargets) of "
                                                 "GenerateProposalLabelsOp "
                                                 "should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("BboxInsideWeights"), true,
        platform::errors::NotFound(
            "Output(BboxInsideWeights) of GenerateProposalLabelsOp "
            "should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("BboxOutsideWeights"), true,
        platform::errors::NotFound(
            "Output(BboxOutsideWeights) of GenerateProposalLabelsOp "
            "should not be null"));
102 103 104

    auto rpn_rois_dims = ctx->GetInputDim("RpnRois");
    auto gt_boxes_dims = ctx->GetInputDim("GtBoxes");
105
    auto im_info_dims = ctx->GetInputDim("ImInfo");
106 107

    PADDLE_ENFORCE_EQ(rpn_rois_dims.size(), 2,
108 109 110 111
                      platform::errors::InvalidArgument(
                          "The dimensions size of Input(RpnRois) must be 2. "
                          "But received dimensions size=[%d], dimensions=[%s].",
                          rpn_rois_dims.size(), rpn_rois_dims));
112
    PADDLE_ENFORCE_EQ(gt_boxes_dims.size(), 2,
113 114 115 116
                      platform::errors::InvalidArgument(
                          "The dimensions size of Input(GtBoxes) must be 2. "
                          "But received dimensions size=[%d], dimensions=[%s].",
                          gt_boxes_dims.size(), gt_boxes_dims));
117
    PADDLE_ENFORCE_EQ(im_info_dims.size(), 2,
118 119 120 121
                      platform::errors::InvalidArgument(
                          "The dimensions size of Input(ImInfo) must be 2. But "
                          "received dimensions size=[%d], dimensions=[%s].",
                          im_info_dims.size(), im_info_dims));
122 123

    int class_nums = ctx->Attrs().Get<int>("class_nums");
124 125 126 127 128 129 130 131
    bool is_cascade_rcnn = ctx->Attrs().Get<bool>("is_cascade_rcnn");
    if (is_cascade_rcnn) {
      PADDLE_ENFORCE_EQ(
          ctx->HasInput("MaxOverlap"), true,
          platform::errors::NotFound(
              "Input(MaxOverlap) of GenerateProposalLabelsOp "
              "should not be null when is_cascade_rcnn is True."));
    }
132 133

    ctx->SetOutputDim("Rois", {-1, 4});
134
    ctx->SetOutputDim("LabelsInt32", {-1, 1});
135 136 137
    ctx->SetOutputDim("BboxTargets", {-1, 4 * class_nums});
    ctx->SetOutputDim("BboxInsideWeights", {-1, 4 * class_nums});
    ctx->SetOutputDim("BboxOutsideWeights", {-1, 4 * class_nums});
138
    ctx->SetOutputDim("MaxOverlapWithGT", {-1});
139 140 141 142 143
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
144
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "RpnRois");
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    return framework::OpKernelType(data_type, platform::CPUPlace());
  }
};

template <typename T>
void Concat(const platform::CPUDeviceContext& context,
            const Tensor& in_tensor_a, const Tensor& in_tensor_b,
            Tensor* out_tensor) {
  int axis = 0;
  std::vector<Tensor> inputs;
  inputs.emplace_back(in_tensor_a);
  inputs.emplace_back(in_tensor_b);
  math::ConcatFunctor<platform::CPUDeviceContext, T> concat_functor;
  concat_functor(context, inputs, axis, out_tensor);
}

template <typename T>
std::vector<std::vector<int>> SampleFgBgGt(
    const platform::CPUDeviceContext& context, Tensor* iou,
164 165
    const Tensor& is_crowd, const int batch_size_per_im,
    const float fg_fraction, const float fg_thresh, const float bg_thresh_hi,
166 167
    const float bg_thresh_lo, std::minstd_rand engine, const bool use_random,
    const bool is_cascade_rcnn, const Tensor& rpn_rois) {
168 169
  std::vector<int> fg_inds;
  std::vector<int> bg_inds;
170
  std::vector<int> mapped_gt_inds;
171 172 173
  int64_t gt_num = is_crowd.numel();
  const int* crowd_data = is_crowd.data<int>();
  T* proposal_to_gt_overlaps = iou->data<T>();
174 175 176 177 178 179
  int64_t row = iou->dims()[0];
  int64_t col = iou->dims()[1];
  float epsilon = 0.00001;
  // Follow the Faster RCNN's implementation
  for (int64_t i = 0; i < row; ++i) {
    const T* v = proposal_to_gt_overlaps + i * col;
180

181
    T max_overlap = *std::max_element(v, v + col);
182 183 184
    if ((i < gt_num) && (crowd_data[i])) {
      max_overlap = -1.0;
    }
185 186
    if (max_overlap >= fg_thresh) {
      // fg mapped gt label index
187 188 189 190 191
      for (int64_t j = 0; j < col; ++j) {
        T val = proposal_to_gt_overlaps[i * col + j];
        auto diff = std::abs(max_overlap - val);
        if (diff < epsilon) {
          fg_inds.emplace_back(i);
192
          mapped_gt_inds.emplace_back(j);
193 194 195
          break;
        }
      }
196 197
    } else if ((max_overlap >= bg_thresh_lo) && (max_overlap < bg_thresh_hi)) {
      bg_inds.emplace_back(i);
198
    } else {
199
      continue;
200 201 202
    }
  }

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
  std::vector<std::vector<int>> res;
  if (is_cascade_rcnn) {
    res.emplace_back(fg_inds);
    res.emplace_back(bg_inds);
    res.emplace_back(mapped_gt_inds);
  } else {
    // Reservoir Sampling
    // sampling fg
    std::uniform_real_distribution<float> uniform(0, 1);
    int fg_rois_per_im = std::floor(batch_size_per_im * fg_fraction);
    int fg_rois_this_image = fg_inds.size();
    int fg_rois_per_this_image = std::min(fg_rois_per_im, fg_rois_this_image);
    if (use_random) {
      const int64_t fg_size = static_cast<int64_t>(fg_inds.size());
      if (fg_size > fg_rois_per_this_image) {
        for (int64_t i = fg_rois_per_this_image; i < fg_size; ++i) {
          int rng_ind = std::floor(uniform(engine) * i);
          if (rng_ind < fg_rois_per_this_image) {
            std::iter_swap(fg_inds.begin() + rng_ind, fg_inds.begin() + i);
            std::iter_swap(mapped_gt_inds.begin() + rng_ind,
                           mapped_gt_inds.begin() + i);
          }
225
        }
226 227
      }
    }
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    std::vector<int> new_fg_inds(fg_inds.begin(),
                                 fg_inds.begin() + fg_rois_per_this_image);
    std::vector<int> new_gt_inds(
        mapped_gt_inds.begin(),
        mapped_gt_inds.begin() + fg_rois_per_this_image);
    // sampling bg
    int bg_rois_per_image = batch_size_per_im - fg_rois_per_this_image;
    int bg_rois_this_image = bg_inds.size();
    int bg_rois_per_this_image =
        std::min(bg_rois_per_image, bg_rois_this_image);
    if (use_random) {
      const int64_t bg_size = static_cast<int64_t>(bg_inds.size());
      if (bg_size > bg_rois_per_this_image) {
        for (int64_t i = bg_rois_per_this_image; i < bg_size; ++i) {
          int rng_ind = std::floor(uniform(engine) * i);
          if (rng_ind < fg_rois_per_this_image)
            std::iter_swap(bg_inds.begin() + rng_ind, bg_inds.begin() + i);
        }
246
      }
247
    }
248 249 250 251 252 253
    std::vector<int> new_bg_inds(bg_inds.begin(),
                                 bg_inds.begin() + bg_rois_per_this_image);
    //
    res.emplace_back(new_fg_inds);
    res.emplace_back(new_bg_inds);
    res.emplace_back(new_gt_inds);
254
  }
255

256 257 258 259 260
  return res;
}

template <typename T>
void GatherBoxesLabels(const platform::CPUDeviceContext& context,
261 262
                       const Tensor& boxes, const Tensor& max_overlap,
                       const Tensor& gt_boxes, const Tensor& gt_classes,
263 264 265
                       const std::vector<int>& fg_inds,
                       const std::vector<int>& bg_inds,
                       const std::vector<int>& gt_inds, Tensor* sampled_boxes,
266 267
                       Tensor* sampled_labels, Tensor* sampled_gts,
                       Tensor* sampled_max_overlap) {
268 269 270 271 272 273
  int fg_num = fg_inds.size();
  int bg_num = bg_inds.size();
  Tensor fg_inds_t, bg_inds_t, gt_box_inds_t, gt_label_inds_t;
  int* fg_inds_data = fg_inds_t.mutable_data<int>({fg_num}, context.GetPlace());
  int* bg_inds_data = bg_inds_t.mutable_data<int>({bg_num}, context.GetPlace());
  int* gt_box_inds_data =
274
      gt_box_inds_t.mutable_data<int>({fg_num}, context.GetPlace());
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
  int* gt_label_inds_data =
      gt_label_inds_t.mutable_data<int>({fg_num}, context.GetPlace());
  std::copy(fg_inds.begin(), fg_inds.end(), fg_inds_data);
  std::copy(bg_inds.begin(), bg_inds.end(), bg_inds_data);
  std::copy(gt_inds.begin(), gt_inds.end(), gt_box_inds_data);
  std::copy(gt_inds.begin(), gt_inds.end(), gt_label_inds_data);

  Tensor fg_boxes, bg_boxes, fg_labels, bg_labels;
  fg_boxes.mutable_data<T>({fg_num, kBoxDim}, context.GetPlace());
  CPUGather<T>(context, boxes, fg_inds_t, &fg_boxes);
  bg_boxes.mutable_data<T>({bg_num, kBoxDim}, context.GetPlace());
  CPUGather<T>(context, boxes, bg_inds_t, &bg_boxes);
  Concat<T>(context, fg_boxes, bg_boxes, sampled_boxes);
  CPUGather<T>(context, gt_boxes, gt_box_inds_t, sampled_gts);
  fg_labels.mutable_data<int>({fg_num}, context.GetPlace());
  CPUGather<int>(context, gt_classes, gt_label_inds_t, &fg_labels);
  bg_labels.mutable_data<int>({bg_num}, context.GetPlace());
292
  phi::funcs::set_constant(context, &bg_labels, 0);
293
  Concat<int>(context, fg_labels, bg_labels, sampled_labels);
294 295 296 297 298 299 300

  Tensor fg_max_overlap, bg_max_overlap;
  fg_max_overlap.mutable_data<T>({fg_num}, context.GetPlace());
  CPUGather<T>(context, max_overlap, fg_inds_t, &fg_max_overlap);
  bg_max_overlap.mutable_data<T>({bg_num}, context.GetPlace());
  CPUGather<T>(context, max_overlap, bg_inds_t, &bg_max_overlap);
  Concat<T>(context, fg_max_overlap, bg_max_overlap, sampled_max_overlap);
301 302 303 304
}

template <typename T>
std::vector<Tensor> SampleRoisForOneImage(
305 306 307 308
    const platform::CPUDeviceContext& context, const Tensor& rpn_rois_in,
    const Tensor& gt_classes, const Tensor& is_crowd, const Tensor& gt_boxes,
    const Tensor& im_info, const int batch_size_per_im, const float fg_fraction,
    const float fg_thresh, const float bg_thresh_hi, const float bg_thresh_lo,
309
    const std::vector<float>& bbox_reg_weights, const int class_nums,
310
    std::minstd_rand engine, bool use_random, bool is_cascade_rcnn,
311
    bool is_cls_agnostic, const Tensor& max_overlap) {
312
  // 1.1 map to original image
313
  auto im_scale = im_info.data<T>()[2];
314 315 316 317
  Tensor rpn_rois;
  rpn_rois.mutable_data<T>(rpn_rois_in.dims(), context.GetPlace());
  const T* rpn_rois_in_dt = rpn_rois_in.data<T>();
  T* rpn_rois_dt = rpn_rois.data<T>();
318

319
  for (int i = 0; i < rpn_rois.numel(); ++i) {
320 321 322 323 324 325 326 327 328 329 330
    rpn_rois_dt[i] = rpn_rois_in_dt[i] / im_scale;
  }

  int proposals_num = 1;

  if (is_cascade_rcnn) {
    Tensor keep;
    FilterRoIs<T>(context, rpn_rois, max_overlap, &keep);
    Tensor roi_filter;
    // Tensor box_filter;
    if (keep.numel() == 0) {
331
      phi::funcs::SetConstant<platform::CPUDeviceContext, T> set_zero;
332 333
      roi_filter.mutable_data<T>({proposals_num, kBoxDim}, context.GetPlace());
      set_zero(context, &roi_filter, static_cast<T>(0));
334
    } else {
335 336 337
      proposals_num = keep.numel();
      roi_filter.mutable_data<T>({proposals_num, kBoxDim}, context.GetPlace());
      CPUGather<T>(context, rpn_rois, keep, &roi_filter);
338
    }
339 340 341 342 343
    T* roi_filter_dt = roi_filter.data<T>();
    memcpy(rpn_rois_dt, roi_filter_dt, roi_filter.numel() * sizeof(T));
    rpn_rois.Resize(roi_filter.dims());
  } else {
    proposals_num = rpn_rois.dims()[0];
344
  }
345
  // 1.2 compute overlaps
346 347
  proposals_num += gt_boxes.dims()[0];

348
  Tensor proposal_to_gt_overlaps;
349
  proposal_to_gt_overlaps.mutable_data<T>({proposals_num, gt_boxes.dims()[0]},
350 351
                                          context.GetPlace());

352 353
  Tensor boxes;
  boxes.mutable_data<T>({proposals_num, kBoxDim}, context.GetPlace());
354
  Concat<T>(context, gt_boxes, rpn_rois, &boxes);
355
  BboxOverlaps<T>(boxes, gt_boxes, &proposal_to_gt_overlaps);
356 357 358 359 360 361 362

  Tensor proposal_with_max_overlap;
  proposal_with_max_overlap.mutable_data<T>({proposals_num},
                                            context.GetPlace());

  MaxIoU<T>(proposal_to_gt_overlaps, &proposal_with_max_overlap);

363
  // Generate proposal index
364 365 366 367
  std::vector<std::vector<int>> fg_bg_gt =
      SampleFgBgGt<T>(context, &proposal_to_gt_overlaps, is_crowd,
                      batch_size_per_im, fg_fraction, fg_thresh, bg_thresh_hi,
                      bg_thresh_lo, engine, use_random, is_cascade_rcnn, boxes);
368 369
  std::vector<int> fg_inds = fg_bg_gt[0];
  std::vector<int> bg_inds = fg_bg_gt[1];
370
  std::vector<int> mapped_gt_inds = fg_bg_gt[2];  // mapped_gt_labels
371 372

  // Gather boxes and labels
373
  Tensor sampled_boxes, sampled_labels, sampled_gts, sampled_max_overlap;
374 375 376
  int fg_num = fg_inds.size();
  int bg_num = bg_inds.size();
  int boxes_num = fg_num + bg_num;
377 378 379
  framework::DDim bbox_dim({boxes_num, kBoxDim});
  sampled_boxes.mutable_data<T>(bbox_dim, context.GetPlace());
  sampled_labels.mutable_data<int>({boxes_num}, context.GetPlace());
380
  sampled_gts.mutable_data<T>({fg_num, kBoxDim}, context.GetPlace());
381 382 383 384 385
  sampled_max_overlap.mutable_data<T>({boxes_num}, context.GetPlace());
  GatherBoxesLabels<T>(context, boxes, proposal_with_max_overlap, gt_boxes,
                       gt_classes, fg_inds, bg_inds, mapped_gt_inds,
                       &sampled_boxes, &sampled_labels, &sampled_gts,
                       &sampled_max_overlap);
386 387 388 389

  // Compute targets
  Tensor bbox_targets_single;
  bbox_targets_single.mutable_data<T>(bbox_dim, context.GetPlace());
390 391
  BoxToDelta<T>(fg_num, sampled_boxes, sampled_gts, bbox_reg_weights.data(),
                false, &bbox_targets_single);
392 393 394 395 396 397

  // Scale rois
  Tensor sampled_rois;
  sampled_rois.mutable_data<T>(sampled_boxes.dims(), context.GetPlace());
  auto sampled_rois_et = framework::EigenTensor<T, 2>::From(sampled_rois);
  auto sampled_boxes_et = framework::EigenTensor<T, 2>::From(sampled_boxes);
398
  sampled_rois_et = sampled_boxes_et * im_scale;
399 400 401 402 403 404 405

  // Expand box targets
  Tensor bbox_targets, bbox_inside_weights, bbox_outside_weights;
  framework::DDim bbox_expand_dim({boxes_num, kBoxDim * class_nums});
  bbox_targets.mutable_data<T>(bbox_expand_dim, context.GetPlace());
  bbox_inside_weights.mutable_data<T>(bbox_expand_dim, context.GetPlace());
  bbox_outside_weights.mutable_data<T>(bbox_expand_dim, context.GetPlace());
406 407 408
  phi::funcs::set_constant(context, &bbox_targets, 0.0);
  phi::funcs::set_constant(context, &bbox_inside_weights, 0.0);
  phi::funcs::set_constant(context, &bbox_outside_weights, 0.0);
409 410 411 412 413 414 415 416 417 418

  auto* bbox_targets_single_data = bbox_targets_single.data<T>();
  auto* sampled_labels_data = sampled_labels.data<int>();
  auto* bbox_targets_data = bbox_targets.data<T>();
  auto* bbox_inside_weights_data = bbox_inside_weights.data<T>();
  auto* bbox_outside_weights_data = bbox_outside_weights.data<T>();
  int width = kBoxDim * class_nums;
  for (int64_t i = 0; i < boxes_num; ++i) {
    int label = sampled_labels_data[i];
    if (label > 0) {
419 420 421
      if (is_cls_agnostic) {
        label = 1;
      }
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
      int dst_idx = i * width + kBoxDim * label;
      int src_idx = kBoxDim * i;
      bbox_targets_data[dst_idx] = bbox_targets_single_data[src_idx];
      bbox_targets_data[dst_idx + 1] = bbox_targets_single_data[src_idx + 1];
      bbox_targets_data[dst_idx + 2] = bbox_targets_single_data[src_idx + 2];
      bbox_targets_data[dst_idx + 3] = bbox_targets_single_data[src_idx + 3];
      bbox_inside_weights_data[dst_idx] = 1;
      bbox_inside_weights_data[dst_idx + 1] = 1;
      bbox_inside_weights_data[dst_idx + 2] = 1;
      bbox_inside_weights_data[dst_idx + 3] = 1;
      bbox_outside_weights_data[dst_idx] = 1;
      bbox_outside_weights_data[dst_idx + 1] = 1;
      bbox_outside_weights_data[dst_idx + 2] = 1;
      bbox_outside_weights_data[dst_idx + 3] = 1;
    }
  }
  std::vector<Tensor> res;
  res.emplace_back(sampled_rois);
  res.emplace_back(sampled_labels);
  res.emplace_back(bbox_targets);
  res.emplace_back(bbox_inside_weights);
  res.emplace_back(bbox_outside_weights);
444
  res.emplace_back(sampled_max_overlap);
445 446 447 448 449 450 451 452 453
  return res;
}

template <typename T>
class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* rpn_rois = context.Input<LoDTensor>("RpnRois");
    auto* gt_classes = context.Input<LoDTensor>("GtClasses");
454
    auto* is_crowd = context.Input<LoDTensor>("IsCrowd");
455
    auto* gt_boxes = context.Input<LoDTensor>("GtBoxes");
456
    auto* im_info = context.Input<LoDTensor>("ImInfo");
457 458 459 460 461 462 463

    auto* rois = context.Output<LoDTensor>("Rois");
    auto* labels_int32 = context.Output<LoDTensor>("LabelsInt32");
    auto* bbox_targets = context.Output<LoDTensor>("BboxTargets");
    auto* bbox_inside_weights = context.Output<LoDTensor>("BboxInsideWeights");
    auto* bbox_outside_weights =
        context.Output<LoDTensor>("BboxOutsideWeights");
464
    auto* max_overlap_with_gt = context.Output<LoDTensor>("MaxOverlapWithGT");
465 466 467 468 469 470 471 472 473

    int batch_size_per_im = context.Attr<int>("batch_size_per_im");
    float fg_fraction = context.Attr<float>("fg_fraction");
    float fg_thresh = context.Attr<float>("fg_thresh");
    float bg_thresh_hi = context.Attr<float>("bg_thresh_hi");
    float bg_thresh_lo = context.Attr<float>("bg_thresh_lo");
    std::vector<float> bbox_reg_weights =
        context.Attr<std::vector<float>>("bbox_reg_weights");
    int class_nums = context.Attr<int>("class_nums");
474
    bool use_random = context.Attr<bool>("use_random");
475 476
    bool is_cascade_rcnn = context.Attr<bool>("is_cascade_rcnn");
    bool is_cls_agnostic = context.Attr<bool>("is_cls_agnostic");
477 478 479 480 481 482
    PADDLE_ENFORCE_EQ(
        rpn_rois->lod().size(), 1UL,
        platform::errors::InvalidArgument(
            "GenerateProposalLabelsOp rpn_rois needs 1 level of LoD. But "
            "received level of LoD is [%d], LoD is [%s].",
            rpn_rois->lod().size(), rpn_rois->lod()));
483 484
    PADDLE_ENFORCE_EQ(
        gt_classes->lod().size(), 1UL,
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
        platform::errors::InvalidArgument(
            "GenerateProposalLabelsOp gt_classes needs 1 level of LoD. But "
            "received level of LoD is [%d], LoD is [%s].",
            gt_classes->lod().size(), gt_classes->lod()));
    PADDLE_ENFORCE_EQ(
        is_crowd->lod().size(), 1UL,
        platform::errors::InvalidArgument(
            "GenerateProposalLabelsOp is_crowd needs 1 level of LoD. But "
            "received level of LoD is [%d], LoD is [%s].",
            is_crowd->lod().size(), is_crowd->lod()));
    PADDLE_ENFORCE_EQ(
        gt_boxes->lod().size(), 1UL,
        platform::errors::InvalidArgument(
            "GenerateProposalLabelsOp gt_boxes needs 1 level of LoD. But "
            "received level of LoD is [%d], LoD is [%s].",
            gt_boxes->lod().size(), gt_boxes->lod()));
501
    int64_t n = static_cast<int64_t>(rpn_rois->lod().back().size() - 1);
502 503 504 505 506 507 508 509
    int64_t rois_num = rpn_rois->dims()[0];
    int64_t gts_num = gt_boxes->dims()[0];
    int64_t init_num =
        is_cascade_rcnn ? rois_num + gts_num : n * batch_size_per_im;

    rois->mutable_data<T>({init_num, kBoxDim}, context.GetPlace());
    labels_int32->mutable_data<int>({init_num, 1}, context.GetPlace());
    bbox_targets->mutable_data<T>({init_num, kBoxDim * class_nums},
510
                                  context.GetPlace());
511 512 513 514 515 516
    bbox_inside_weights->mutable_data<T>({init_num, kBoxDim * class_nums},
                                         context.GetPlace());
    bbox_outside_weights->mutable_data<T>({init_num, kBoxDim * class_nums},
                                          context.GetPlace());
    max_overlap_with_gt->Resize({init_num});
    max_overlap_with_gt->mutable_data<T>(context.GetPlace());
517 518 519

    std::random_device rnd;
    std::minstd_rand engine;
520
    int seed = rnd();
521 522 523 524 525 526 527 528 529 530
    engine.seed(seed);

    framework::LoD lod;
    std::vector<size_t> lod0(1, 0);

    int64_t num_rois = 0;
    auto& dev_ctx = context.device_context<platform::CPUDeviceContext>();

    auto rpn_rois_lod = rpn_rois->lod().back();
    auto gt_classes_lod = gt_classes->lod().back();
531
    auto is_crowd_lod = is_crowd->lod().back();
532
    auto gt_boxes_lod = gt_boxes->lod().back();
533
    for (int i = 0; i < n; ++i) {
534 535 536 537
      if (rpn_rois_lod[i] == rpn_rois_lod[i + 1]) {
        lod0.emplace_back(num_rois);
        continue;
      }
538 539 540 541
      Tensor rpn_rois_slice =
          rpn_rois->Slice(rpn_rois_lod[i], rpn_rois_lod[i + 1]);
      Tensor gt_classes_slice =
          gt_classes->Slice(gt_classes_lod[i], gt_classes_lod[i + 1]);
542 543
      Tensor is_crowd_slice =
          is_crowd->Slice(is_crowd_lod[i], is_crowd_lod[i + 1]);
544 545
      Tensor gt_boxes_slice =
          gt_boxes->Slice(gt_boxes_lod[i], gt_boxes_lod[i + 1]);
546
      Tensor im_info_slice = im_info->Slice(i, i + 1);
547 548 549 550 551 552 553 554 555
      Tensor max_overlap_slice;
      if (is_cascade_rcnn) {
        auto* max_overlap = context.Input<Tensor>("MaxOverlap");
        max_overlap_slice =
            max_overlap->Slice(rpn_rois_lod[i], rpn_rois_lod[i + 1]);
      } else {
        max_overlap_slice.mutable_data<T>({rpn_rois_slice.dims()[0]},
                                          context.GetPlace());
      }
556
      std::vector<Tensor> tensor_output = SampleRoisForOneImage<T>(
557 558
          dev_ctx, rpn_rois_slice, gt_classes_slice, is_crowd_slice,
          gt_boxes_slice, im_info_slice, batch_size_per_im, fg_fraction,
559
          fg_thresh, bg_thresh_hi, bg_thresh_lo, bbox_reg_weights, class_nums,
560 561
          engine, use_random, is_cascade_rcnn, is_cls_agnostic,
          max_overlap_slice);
562 563 564 565 566
      Tensor sampled_rois = tensor_output[0];
      Tensor sampled_labels_int32 = tensor_output[1];
      Tensor sampled_bbox_targets = tensor_output[2];
      Tensor sampled_bbox_inside_weights = tensor_output[3];
      Tensor sampled_bbox_outside_weights = tensor_output[4];
567
      Tensor sampled_max_overlap = tensor_output[5];
568 569 570

      AppendRois<T>(rois, kBoxDim * num_rois, &sampled_rois);
      AppendRois<int>(labels_int32, num_rois, &sampled_labels_int32);
571 572 573 574
      int64_t offset = kBoxDim * num_rois * class_nums;
      AppendRois<T>(bbox_targets, offset, &sampled_bbox_targets);
      AppendRois<T>(bbox_inside_weights, offset, &sampled_bbox_inside_weights);
      AppendRois<T>(bbox_outside_weights, offset,
575
                    &sampled_bbox_outside_weights);
576
      AppendRois<T>(max_overlap_with_gt, num_rois, &sampled_max_overlap);
577 578 579 580 581 582 583 584 585 586 587 588

      num_rois += sampled_rois.dims()[0];
      lod0.emplace_back(num_rois);
    }

    lod.emplace_back(lod0);
    rois->set_lod(lod);
    labels_int32->set_lod(lod);
    bbox_targets->set_lod(lod);
    bbox_inside_weights->set_lod(lod);
    bbox_outside_weights->set_lod(lod);
    rois->Resize({num_rois, kBoxDim});
589
    labels_int32->Resize({num_rois, 1});
590 591 592
    bbox_targets->Resize({num_rois, kBoxDim * class_nums});
    bbox_inside_weights->Resize({num_rois, kBoxDim * class_nums});
    bbox_outside_weights->Resize({num_rois, kBoxDim * class_nums});
593 594
    max_overlap_with_gt->Resize({num_rois});
    max_overlap_with_gt->set_lod(lod);
595 596 597 598 599 600
  }
};

class GenerateProposalLabelsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
B
buxingyuan 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
    AddInput(
        "RpnRois",
        "(LoDTensor), This input is a 2D LoDTensor with shape [N, 4]. "
        "N is the number of the GenerateProposalOp's output, "
        "each element is a bounding box with [xmin, ymin, xmax, ymax] format.");
    AddInput("GtClasses",
             "(LoDTensor), This input is a 2D LoDTensor with shape [M, 1]. "
             "M is the number of groundtruth, "
             "each element is a class label of groundtruth.");
    AddInput(
        "IsCrowd",
        "(LoDTensor), This input is a 2D LoDTensor with shape [M, 1]. "
        "M is the number of groundtruth, "
        "each element is a flag indicates whether a groundtruth is crowd.");
    AddInput(
        "GtBoxes",
        "(LoDTensor), This input is a 2D LoDTensor with shape [M, 4]. "
        "M is the number of groundtruth, "
        "each element is a bounding box with [xmin, ymin, xmax, ymax] format.");
    AddInput("ImInfo",
             "(Tensor), This input is a 2D Tensor with shape [B, 3]. "
             "B is the number of input images, "
             "each element consists of im_height, im_width, im_scale.");
624 625 626 627 628 629
    AddInput("MaxOverlap",
             "(LoDTensor), This input is a 1D LoDTensor with shape [N]."
             "N is the number of Input(RpnRois), "
             "each element is the maximum overlap between "
             "the proposal RoI and ground-truth.")
        .AsDispensable();
B
buxingyuan 已提交
630 631 632 633 634 635 636

    AddOutput(
        "Rois",
        "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4]. "
        "P usuall equal to  batch_size_per_im * batch_size, "
        "each element is a bounding box with [xmin, ymin, xmax, ymax] format.");
    AddOutput("LabelsInt32",
637
              "(LoDTensor), This output is a 2D LoDTensor with shape [P, 1], "
T
tianshuo78520a 已提交
638
              "each element represents a class label of a roi");
B
buxingyuan 已提交
639 640 641
    AddOutput("BboxTargets",
              "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4 * "
              "class_nums], "
T
tianshuo78520a 已提交
642
              "each element represents a box label of a roi");
B
buxingyuan 已提交
643 644 645 646 647 648 649 650 651 652
    AddOutput(
        "BboxInsideWeights",
        "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4 * "
        "class_nums], "
        "each element indicates whether a box should contribute to loss.");
    AddOutput(
        "BboxOutsideWeights",
        "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4 * "
        "class_nums], "
        "each element indicates whether a box should contribute to loss.");
653 654 655 656 657 658
    AddOutput("MaxOverlapWithGT",
              "(LoDTensor), This output is a 1D LoDTensor with shape [P], "
              "each element indicates the maxoverlap "
              "between output RoIs and ground-truth. "
              "The output RoIs may include ground-truth "
              "and the output maxoverlap may contain 1.");
B
buxingyuan 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

    AddAttr<int>("batch_size_per_im", "Batch size of rois per images.");
    AddAttr<float>("fg_fraction",
                   "Foreground fraction in total batch_size_per_im.");
    AddAttr<float>(
        "fg_thresh",
        "Overlap threshold which is used to chose foreground sample.");
    AddAttr<float>("bg_thresh_hi",
                   "Overlap threshold upper bound which is used to chose "
                   "background sample.");
    AddAttr<float>("bg_thresh_lo",
                   "Overlap threshold lower bound which is used to chose "
                   "background sample.");
    AddAttr<std::vector<float>>("bbox_reg_weights", "Box regression weights.");
    AddAttr<int>("class_nums", "Class number.");
    AddAttr<bool>(
        "use_random",
        "Use random sampling to choose foreground and background boxes.")
        .SetDefault(true);
678 679 680 681 682 683 684
    AddAttr<bool>("is_cascade_rcnn",
                  "cascade rcnn sampling policy changed from stage 2.")
        .SetDefault(false);
    AddAttr<bool>(
        "is_cls_agnostic",
        "the box regress will only include fg and bg locations if set true ")
        .SetDefault(false);
685 686

    AddComment(R"DOC(
B
buxingyuan 已提交
687
This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
688
to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
689 690 691

RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
692
If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
693 694
If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
then it was considered as a background sample.
B
buxingyuan 已提交
695
After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
696
then we apply random sampling to make sure
B
buxingyuan 已提交
697
the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
698 699 700 701

For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.
    )DOC");
702 703 704 705 706 707 708
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
709 710 711 712 713
REGISTER_OPERATOR(
    generate_proposal_labels, ops::GenerateProposalLabelsOp,
    ops::GenerateProposalLabelsOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
714 715 716
REGISTER_OP_CPU_KERNEL(generate_proposal_labels,
                       ops::GenerateProposalLabelsKernel<float>,
                       ops::GenerateProposalLabelsKernel<double>);
W
whs 已提交
717 718 719 720 721 722 723 724 725 726 727 728 729

REGISTER_OP_VERSION(generate_proposal_labels)
    .AddCheckpoint(
        R"ROC(
              Upgrade of output [MaxOverlapWithGT])ROC",
        paddle::framework::compatible::OpVersionDesc().NewOutput(
            "MaxOverlapWithGT",
            "The maxoverlap between output RoIs and ground-truth."))
    .AddCheckpoint(
        R"ROC(
              Upgrade generate_proposal_labels add a new input [MaxOverlap])ROC",
        paddle::framework::compatible::OpVersionDesc().NewInput(
            "MaxOverlap", "MaxOverlap is dispensable."));