softmax_mkldnn_op.cc 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <iostream>
16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include "mkldnn.hpp"
#include "paddle/fluid/operators/softmax_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;

using mkldnn::memory;  // Note: paddle has also "memory" namespace
using mkldnn::primitive;
using mkldnn::softmax_forward;
J
Jacek Czaja 已提交
30
using mkldnn::softmax_backward;
31 32
using mkldnn::prop_kind;
using mkldnn::stream;
J
Jacek Czaja 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
using platform::to_void_cast;

class SoftmaxMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  SoftmaxMKLDNNHandler(
      std::shared_ptr<mkldnn::softmax_forward::primitive_desc> softmax_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        softmax_pd_(softmax_pd) {}

  SoftmaxMKLDNNHandler(
      std::shared_ptr<mkldnn::softmax_forward::primitive_desc> softmax_pd,
      std::shared_ptr<mkldnn::softmax_backward::primitive_desc> softmax_bwd_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        softmax_pd_(softmax_pd),
        softmax_bwd_pd_(softmax_bwd_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

  std::shared_ptr<mkldnn::softmax_forward> AcquireSoftmax(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    /*Generate key*/
    auto prim_key = key_ + "@softmax_p";

    auto softmax_p = std::static_pointer_cast<mkldnn::softmax_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((softmax_p != nullptr) || (is_reusing_ == false),
                   "Fail to find softmax primitive in device context");
    if (softmax_p == nullptr) {
      softmax_p = std::make_shared<mkldnn::softmax_forward>(
          *(softmax_pd_.get()),
          *(static_cast<mkldnn::memory*>(src_memory_p.get())),
          *(static_cast<mkldnn::memory*>(dst_memory_p.get())));
      dev_ctx_.SetBlob(prim_key, softmax_p);
    } else {
      is_reusing_ = true;
    }

    return softmax_p;
  }

  std::shared_ptr<mkldnn::softmax_backward> AcquireSoftmaxBackward(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@softmax_bwd_p";
    auto softmax_bwd_p = std::static_pointer_cast<mkldnn::softmax_backward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((softmax_bwd_p != nullptr) || (is_reusing_ == false),
                   "Fail to find softmax backward primitive in device context");
    if (softmax_bwd_p == nullptr) {
      softmax_bwd_p = std::make_shared<mkldnn::softmax_backward>(
          *softmax_bwd_pd_, *(dst_memory_p.get()), *(diff_dst_memory_p.get()),
          *(diff_src_memory_p.get()));
      dev_ctx_.SetBlob(prim_key, softmax_bwd_p);
    } else {
      is_reusing_ = true;
    }

    return softmax_bwd_p;
  }

 private:
  std::shared_ptr<mkldnn::softmax_forward::primitive_desc> softmax_pd_;
  std::shared_ptr<mkldnn::softmax_backward::primitive_desc> softmax_bwd_pd_;
};
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

template <typename T>
class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();
    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");
    PADDLE_ENFORCE(input->dims().size() == 2UL,
                   "The input of softmax op must be a 2D matrix.");
    const T* input_data = input->data<T>();
    // allocate memory for output
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
    // MKL-DNN does support softmax over selected axis. Having 2D Tensor,
    // we will make normalization after final eg. axis: 1
    PADDLE_ENFORCE(((src_tz[0] == dst_tz[0]) && (src_tz[1] == dst_tz[1])),
                   "Softmax input and output dimensions should match");
    // Same memory descriptor to be used for input and output
    memory::dims softmax_tz = {src_tz[0], src_tz[1]};
129
    // Generate keys for storing/retriving primitives for this operator
J
Jacek Czaja 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    const std::string key =
        platform::MKLDNNHandler::GetHash(softmax_tz, ctx.op().Output("Out"));
    const std::string key_softmax_pd = key + "@softmax_pd";

    // Currently only NC data format is supported
    auto softmax_md = MKLDNNMemDesc(
        {softmax_tz}, platform::MKLDNNGetDataType<T>(), memory::format::nc);
    // Normalization is made after innermost dimension eg. C out of NC
    auto softmax_desc = softmax_forward::desc(prop_kind::forward_scoring,
                                              softmax_md, 1 /*dim: C*/);
    auto softmax_pd = std::make_shared<mkldnn::softmax_forward::primitive_desc>(
        softmax_desc, mkldnn_engine);
    dev_ctx.SetBlob(key_softmax_pd, softmax_pd);

    SoftmaxMKLDNNHandler handler(softmax_pd, dev_ctx, mkldnn_engine, key);
    auto softmax_src_memory_p =
        handler.AcquireSrcMemory(softmax_md, to_void_cast<T>(input_data));
    auto softmax_dst_memory_p =
        handler.AcquireDstMemory(softmax_md, to_void_cast<T>(output_data));
    auto softmax_p =
        handler.AcquireSoftmax(softmax_dst_memory_p, softmax_src_memory_p);
151 152 153

    std::vector<primitive> pipeline{
        *(static_cast<softmax_forward::primitive*>(softmax_p.get()))};
154
    stream(stream::kind::eager).submit(pipeline).wait();
J
Jacek Czaja 已提交
155 156 157 158

    const bool is_test = ctx.Attr<bool>("is_test");
    if (!is_test) {
      T threshold = exp(-64);
159
      for (int i = 0; i < dst_tz[0] * dst_tz[1]; ++i) {
J
Jacek Czaja 已提交
160 161 162 163
        output_data[i] =
            output_data[i] < threshold ? threshold : output_data[i];
      }
    }
164 165 166
  }
};

J
Jacek Czaja 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
template <typename T>
class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();
    const Tensor* output = ctx.Input<Tensor>("Out");
    const T* dst_data = output->data<T>();

    auto* dout = ctx.template Input<Tensor>(framework::GradVarName("Out"));
    const auto* diff_dst_ptr = dout->template data<T>();

    auto* dx =
        ctx.template Output<framework::Tensor>(framework::GradVarName("X"));
    T* diff_src_ptr = dx->template mutable_data<T>(ctx.GetPlace());

    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
    std::vector<int> src_tz(dst_tz);
    PADDLE_ENFORCE(output->dims().size() == 2UL,
                   "The input of softmax op must be a 2D matrix.");
    // MKL-DNN does support softmax over selected axis. Having 2D Tensor,
    // we will make normalization after final eg. axis: 1
    PADDLE_ENFORCE(((src_tz[0] == dst_tz[0]) && (src_tz[1] == dst_tz[1])),
                   "Softmax input and output dimensions should match");
    // Same memory descriptor to be used for input and output
    memory::dims softmax_tz = {src_tz[0], src_tz[1]};
    // Currently only supports NC data format
    // retrieve eltwise primitive desc from device context
    const std::string key =
        platform::MKLDNNHandler::GetHash(softmax_tz, ctx.op().Input("Out"));
    const std::string key_softmax_pd = key + "@softmax_pd";

    auto softmax_pd =
        std::static_pointer_cast<mkldnn::softmax_forward::primitive_desc>(
            dev_ctx.GetBlob(key_softmax_pd));
    PADDLE_ENFORCE(softmax_pd != nullptr,
                   "Fail to find softmax_pd in device context");

    // TODO(jczaja): Add layouts support when there is a need to do so
    // Two dimensional softmax does support NC format
    auto data_softmax_md = MKLDNNMemDesc(
        {softmax_tz}, platform::MKLDNNGetDataType<T>(), memory::format::nc);
    auto diff_softmax_md = MKLDNNMemDesc(
        {softmax_tz}, platform::MKLDNNGetDataType<T>(), memory::format::nc);
    // Normalization is made after innermost dimension eg. C out of NC
    auto softmax_bwd_desc =
        softmax_backward::desc(diff_softmax_md, data_softmax_md, 1 /* dim: C*/);
    auto softmax_bwd_pd =
        std::make_shared<mkldnn::softmax_backward::primitive_desc>(
            softmax_bwd_desc, mkldnn_engine, *softmax_pd);

    SoftmaxMKLDNNHandler handler(softmax_pd, softmax_bwd_pd, dev_ctx,
                                 mkldnn_engine, key);
    auto dst_memory_p =
        handler.AcquireDstMemory(data_softmax_md, to_void_cast<T>(dst_data));
    auto diff_dst_memory_p = handler.AcquireDiffDstMemory(
        diff_softmax_md, to_void_cast<T>(diff_dst_ptr));
    auto diff_src_memory_p = handler.AcquireDiffSrcMemory(
        diff_softmax_md, to_void_cast<T>(diff_src_ptr));

    // Get primitve from device context
    auto softmax_bwd_p = handler.AcquireSoftmaxBackward(
        dst_memory_p, diff_dst_memory_p, diff_src_memory_p);

    std::vector<primitive> pipeline{*softmax_bwd_p};
    stream(stream::kind::eager).submit(pipeline).wait();
  }
};
238 239 240 241 242 243 244
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(softmax, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNKernel<float>);
J
Jacek Czaja 已提交
245 246
REGISTER_OP_KERNEL(softmax_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNGradKernel<float>);