test_sparse_attention_op.py 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
19
from paddle.static import Program, program_guard
20
import paddle
21 22 23
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.nn.functional as F
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
import os
import re


def get_cuda_version():
    result = os.popen("nvcc --version").read()
    regex = r'release (\S+),'
    match = re.search(regex, result)
    if match:
        num = str(match.group(1))
        integer, decimal = num.split('.')
        return int(integer) * 1000 + int(float(decimal) * 10)
    else:
        return -1


def softmax(x):
    max = np.max(x, axis=1, keepdims=True)
    e_x = np.exp(x - max)
    sum = np.sum(e_x, axis=1, keepdims=True)
    f_x = e_x / sum
    return f_x


def get_csr_value(mat, layout, nnz):
    row, col = mat.shape[0], mat.shape[1]
    value = np.zeros(nnz)
    ptr = 0
    for i in range(row):
        for j in range(col):
            if layout[i][j] == 1:
                value[ptr] = mat[i][j]
                ptr += 1
    return value


def ref_sparse_attention(q, k, v, offset, columns):
    row, col, nnz = q.shape[0], q.shape[1], columns.shape[0]
    mat = np.zeros((row, row))
    for cur_row in range(row):
        start_ptr = int(offset[cur_row])
        end_ptr = int(offset[cur_row + 1])
        for ptr in range(start_ptr, end_ptr):
            cur_col = int(columns[ptr])
            mat[cur_row][cur_col] = 1
    a = np.dot(q, k.T) * mat
    a_value = get_csr_value(a, mat, nnz)
    scaling = float(col)**-0.5
    a = scaling * a
    for i in range(row):
        for j in range(row):
            if mat[i][j] == 0:
                a[i][j] = float('-inf')
    b = softmax(a)
    b_value = get_csr_value(b, mat, nnz)
    result = np.dot(b, v)
    return result, a_value, b_value


def ref_batch_sparse_attention(q, k, v, offset, columns):
    batch_size, num_heads, row, col = q.shape
    nnz = columns.shape[2]
    result = np.zeros((batch_size, num_heads, row, col))
    result_sdd = np.zeros((batch_size, num_heads, nnz))
    result_softmax = np.zeros((batch_size, num_heads, nnz))
    for i in range(batch_size):
        for j in range(num_heads):
            cur_q, cur_k, cur_v, = q[i][j], k[i][j], v[i][j]
            cur_offset, cur_columns = offset[i][j], columns[i][j]
            cur_result, cur_sdd, cur_softmax = ref_sparse_attention(
                cur_q, cur_k, cur_v, cur_offset, cur_columns)
            result[i][j] = cur_result
            result_sdd[i][j], result_softmax[i][j] = cur_sdd, cur_softmax
    return result, result_sdd, result_softmax


def init_csr_format(batch_size, num_heads, rows, blocksize):
    block_num, block_last = rows / blocksize, rows % blocksize
    nnz_num = block_num * blocksize * blocksize + block_last * block_last
    offset = np.zeros(rows + 1)
    columns = np.zeros(int(nnz_num))
    mat = np.zeros((rows, rows))
    for i in range(0, rows, blocksize):
        for x in range(blocksize):
            for y in range(blocksize):
                p_x, p_y = i + x, i + y
                if (p_x < rows) and (p_y < rows):
                    mat[p_x][p_y] = 1
    p_offset, p_column, count = 0, 0, 0
    for i in range(rows):
        for j in range(rows):
            if mat[i][j] != 0:
                count += 1
                columns[p_column] = j
                p_column += 1
        p_offset += 1
        offset[p_offset] = count
    offset = np.expand_dims(np.expand_dims(offset, 0), 0)
    offset = offset.repeat(num_heads, axis=1)
    offset = offset.repeat(batch_size, axis=0)
    columns = np.expand_dims(np.expand_dims(columns, 0), 0)
    columns = columns.repeat(num_heads, axis=1)
    columns = columns.repeat(batch_size, axis=0)
    return offset, columns


@unittest.skipIf(
131 132
    not core.is_compiled_with_cuda() or get_cuda_version() < 11030,
    "core is not compiled with CUDA and cuda version need larger than or equal to 11.3"
133
)
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
class TestSparseAttentionOp(OpTest):
    def config(self):
        self.shape = (1, 1, 16, 8)
        self.blocksize = 2
        self.dtype = "float64"

    def setUp(self):
        paddle.enable_static()
        self.config()
        self.op_type = "sparse_attention"
        self.place = paddle.CUDAPlace(0)
        self.q = np.random.random(self.shape).astype(self.dtype)
        self.k = np.random.random(self.shape).astype(self.dtype)
        self.v = np.random.random(self.shape).astype(self.dtype)
        offset, columns = init_csr_format(self.shape[0], self.shape[1],
                                          self.shape[2], self.blocksize)
        self.offset = offset.astype('int32')
        self.columns = columns.astype('int32')

        result, result_sdd, result_softmax = ref_batch_sparse_attention(
            self.q, self.k, self.v, self.offset, self.columns)

        self.inputs = {
            'Q': self.q,
            'K': self.k,
            'V': self.v,
160 161
            'Offset': self.offset,
            'Columns': self.columns
162 163 164
        }
        self.outputs = {
            'Out': result.astype(self.dtype),
165 166
            'SparseDotSdd': result_sdd.astype(self.dtype),
            'Softmax': result_softmax.astype(self.dtype)
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
        }

    def test_check_output(self):
        self.check_output_with_place(self.place)

    def test_check_grad(self):
        self.check_grad_with_place(self.place, ['Q'], 'Out')
        self.check_grad_with_place(self.place, ['K'], 'Out')
        self.check_grad_with_place(self.place, ['V'], 'Out')


class TestSparseAttentionOpFp32Test(TestSparseAttentionOp):
    def config(self):
        self.shape = (1, 1, 8, 16)
        self.blocksize = 2
        self.dtype = "float32"


class TestSparseAttentionOpShapeTest(TestSparseAttentionOp):
    def config(self):
        self.shape = (2, 2, 32, 8)
        self.blocksize = 8
        self.dtype = "float64"


192
@unittest.skipIf(
193 194
    not core.is_compiled_with_cuda() or get_cuda_version() < 11030,
    "core is not compiled with CUDA and cuda version need larger than or equal to 11.3"
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
)
class TestSparseAttentionAPI(unittest.TestCase):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (1, 1, 8, 4)
        self.blocksize = 2
        self.dtype = 'float64'

    def test_static_graph(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            Q = paddle.static.data(name="Q", shape=self.shape, dtype=self.dtype)
            K = paddle.static.data(name="K", shape=self.shape, dtype=self.dtype)
            V = paddle.static.data(name="V", shape=self.shape, dtype=self.dtype)

            batch_size, num_heads, rows = self.shape[0], self.shape[
                1], self.shape[2]
            block_num = rows / self.blocksize
            block_last = rows % self.blocksize
            sparse_nnz_num = block_num * self.blocksize * self.blocksize + block_last * block_last
            offset_shape = (batch_size, num_heads, rows + 1)
            columns_shape = (batch_size, num_heads, int(sparse_nnz_num))

            offset = paddle.static.data(
                name="Offset", shape=offset_shape, dtype="int32")
            columns = paddle.static.data(
                name="Columns", shape=columns_shape, dtype="int32")
            Out = F.sparse_attention(Q, K, V, offset, columns)

            Q_np = np.random.random(self.shape).astype(self.dtype)
            K_np = np.random.random(self.shape).astype(self.dtype)
            V_np = np.random.random(self.shape).astype(self.dtype)
            offset_np, columns_np = init_csr_format(
                self.shape[0], self.shape[1], self.shape[2], self.blocksize)
            offset_np = offset_np.astype('int32')
            columns_np = columns_np.astype('int32')

            exe = fluid.Executor(self.place)
            fetches_result = exe.run(feed={
                "Q": Q_np,
                "K": K_np,
                "V": V_np,
                "Offset": offset_np,
                "Columns": columns_np
            },
                                     fetch_list=[Out])
            expected_result, __, __ = ref_batch_sparse_attention(
                Q_np, K_np, V_np, offset_np, columns_np)

            self.assertTrue(
                np.allclose(
                    fetches_result, expected_result, atol=1e-5))

    def test_dygraph(self):
        paddle.disable_static()
        offset, columns = init_csr_format(self.shape[0], self.shape[1],
                                          self.shape[2], self.blocksize)
        offset = offset.astype('int32')
        columns = columns.astype('int32')
        query = np.random.random(self.shape).astype(self.dtype)
        key = np.random.random(self.shape).astype(self.dtype)
        value = np.random.random(self.shape).astype(self.dtype)

        paddle_query = paddle.to_tensor(query, place=self.place)
        paddle_key = paddle.to_tensor(key, place=self.place)
        paddle_value = paddle.to_tensor(value, place=self.place)
        paddle_offset = paddle.to_tensor(offset, place=self.place)
        paddle_colunmns = paddle.to_tensor(columns, place=self.place)

        paddle_result = F.sparse_attention(paddle_query, paddle_key,
                                           paddle_value, paddle_offset,
                                           paddle_colunmns)

        numpy_result, __, __ = ref_batch_sparse_attention(query, key, value,
                                                          offset, columns)
        numpy_result = numpy_result.astype(self.dtype)

        self.assertTrue(
            np.allclose(
                paddle_result.numpy(), numpy_result, atol=1e-5))


class TestSparseAttentionAPITestFloat(TestSparseAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (2, 2, 8, 4)
        self.blocksize = 2
        self.dtype = 'float32'


class TestSparseAttentionAPITestShape1(TestSparseAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (2, 2, 64, 32)
        self.blocksize = 2
        self.dtype = 'float64'


class TestSparseAttentionAPITestShape2(TestSparseAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (2, 1, 64, 32)
        self.blocksize = 2
        self.dtype = 'float64'


class TestSparseAttentionAPITestShape3(TestSparseAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (4, 4, 128, 32)
        self.blocksize = 8
        self.dtype = 'float64'


class TestSparseAttentionAPITestShape4(TestSparseAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (3, 3, 35, 15)
        self.blocksize = 3
        self.dtype = 'float64'


317 318
if __name__ == '__main__':
    unittest.main()