test_case.py 11.7 KB
Newer Older
L
liym27 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17 18
from functools import partial

import numpy as np
L
liym27 已提交
19

20
import paddle
L
liym27 已提交
21 22 23
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
24
import paddle.fluid.optimizer as optimizer
25
from paddle.fluid.framework import Program, program_guard
L
liym27 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48


class TestAPICase(unittest.TestCase):
    def test_return_single_var(self):
        def fn_1():
            return layers.fill_constant(shape=[4, 2], dtype='int32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[4, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[4, 3], dtype='int32', value=3)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3

            # call fn_1
49 50 51
            out_0 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_1, fn_2)], default=fn_3
            )
L
liym27 已提交
52 53

            # call fn_2
54 55 56
            out_1 = layers.case(
                pred_fn_pairs=[(pred_2, fn_1), (pred_1, fn_2)], default=fn_3
            )
L
liym27 已提交
57 58

            # call default fn_3
59 60 61
            out_2 = layers.case(
                pred_fn_pairs=((pred_2, fn_1), (pred_2, fn_2)), default=fn_3
            )
L
liym27 已提交
62 63 64 65 66 67 68

            # no default, call fn_2
            out_3 = layers.case(pred_fn_pairs=[(pred_1, fn_2)])

            # no default, call fn_2. but pred_2 is false
            out_4 = layers.case(pred_fn_pairs=[(pred_2, fn_2)])

69 70 71 72 73
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
L
liym27 已提交
74 75
            exe = fluid.Executor(place)

76 77 78
            res = exe.run(
                main_program, fetch_list=[out_0, out_1, out_2, out_3, out_4]
            )
L
liym27 已提交
79

80 81 82 83 84
            np.testing.assert_allclose(res[0], 1, rtol=1e-05)
            np.testing.assert_allclose(res[1], 2, rtol=1e-05)
            np.testing.assert_allclose(res[2], 3, rtol=1e-05)
            np.testing.assert_allclose(res[3], 2, rtol=1e-05)
            np.testing.assert_allclose(res[4], 2, rtol=1e-05)
L
liym27 已提交
85 86 87

    def test_return_var_tuple(self):
        def fn_1():
88 89 90
            return layers.fill_constant(
                shape=[1, 2], dtype='int32', value=1
            ), layers.fill_constant(shape=[2, 3], dtype='float32', value=2)
L
liym27 已提交
91 92

        def fn_2():
93 94 95
            return layers.fill_constant(
                shape=[3, 4], dtype='int32', value=3
            ), layers.fill_constant(shape=[4, 5], dtype='float32', value=4)
L
liym27 已提交
96 97

        def fn_3():
98 99 100
            return layers.fill_constant(
                shape=[5], dtype='int32', value=5
            ), layers.fill_constant(shape=[5, 6], dtype='float32', value=6)
L
liym27 已提交
101 102 103 104 105 106 107 108

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=1)
            y = layers.fill_constant(shape=[1], dtype='float32', value=1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=3)

109 110
            pred_1 = paddle.equal(x, y)  # true
            pred_2 = paddle.equal(x, z)  # false
L
liym27 已提交
111 112 113

            out = layers.case(((pred_1, fn_1), (pred_2, fn_2)), fn_3)

114 115 116 117 118
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
L
liym27 已提交
119 120 121
            exe = fluid.Executor(place)
            ret = exe.run(main_program, fetch_list=out)

122 123 124 125 126 127
            np.testing.assert_allclose(
                np.asarray(ret[0]), np.full((1, 2), 1, np.int32), rtol=1e-05
            )
            np.testing.assert_allclose(
                np.asarray(ret[1]), np.full((2, 3), 2, np.float32), rtol=1e-05
            )
L
liym27 已提交
128 129 130 131 132 133 134


class TestAPICase_Nested(unittest.TestCase):
    def test_nested_case(self):
        def fn_1(x=1):
            var_5 = layers.fill_constant(shape=[1], dtype='int32', value=5)
            var_6 = layers.fill_constant(shape=[1], dtype='int32', value=6)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
            out = layers.case(
                pred_fn_pairs=[
                    (
                        var_5 < var_6,
                        partial(
                            layers.fill_constant,
                            shape=[1],
                            dtype='int32',
                            value=x,
                        ),
                    ),
                    (
                        var_5 == var_6,
                        partial(
                            layers.fill_constant,
                            shape=[2],
                            dtype='int32',
                            value=x,
                        ),
                    ),
                ]
            )
L
liym27 已提交
157 158 159 160 161
            return out

        def fn_2(x=2):
            var_5 = layers.fill_constant(shape=[1], dtype='int32', value=5)
            var_6 = layers.fill_constant(shape=[1], dtype='int32', value=6)
162 163 164 165 166 167 168 169 170 171 172 173 174 175
            out = layers.case(
                pred_fn_pairs=[
                    (var_5 < var_6, partial(fn_1, x=x)),
                    (
                        var_5 == var_6,
                        partial(
                            layers.fill_constant,
                            shape=[2],
                            dtype='int32',
                            value=x,
                        ),
                    ),
                ]
            )
L
liym27 已提交
176 177 178 179 180
            return out

        def fn_3():
            var_5 = layers.fill_constant(shape=[1], dtype='int32', value=5)
            var_6 = layers.fill_constant(shape=[1], dtype='int32', value=6)
181 182 183 184 185 186 187 188 189 190 191 192 193 194
            out = layers.case(
                pred_fn_pairs=[
                    (var_5 < var_6, partial(fn_2, x=3)),
                    (
                        var_5 == var_6,
                        partial(
                            layers.fill_constant,
                            shape=[2],
                            dtype='int32',
                            value=7,
                        ),
                    ),
                ]
            )
L
liym27 已提交
195 196 197 198 199 200 201 202 203 204 205
            return out

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3

206 207 208
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
L
liym27 已提交
209

210 211 212
            out_2 = layers.case(
                pred_fn_pairs=[(pred_2, fn_1), (pred_1, fn_2)], default=fn_3
            )
L
liym27 已提交
213

214 215 216
            out_3 = layers.case(
                pred_fn_pairs=[(x == y, fn_1), (x == z, fn_2)], default=fn_3
            )
L
liym27 已提交
217

218 219 220 221 222
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
L
liym27 已提交
223 224 225 226
            exe = fluid.Executor(place)

            res = exe.run(main_program, fetch_list=[out_1, out_2, out_3])

227 228 229
            np.testing.assert_allclose(res[0], 1, rtol=1e-05)
            np.testing.assert_allclose(res[1], 2, rtol=1e-05)
            np.testing.assert_allclose(res[2], 3, rtol=1e-05)
L
liym27 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243


class TestAPICase_Error(unittest.TestCase):
    def test_error(self):
        def fn_1():
            return layers.fill_constant(shape=[4, 2], dtype='int32', value=1)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.23)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)
            pred_1 = layers.less_than(z, x)  # true

244
            # The type of 'pred_fn_pairs' in case must be list or tuple
L
liym27 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
            def type_error_pred_fn_pairs():
                layers.case(pred_fn_pairs=1, default=fn_1)

            self.assertRaises(TypeError, type_error_pred_fn_pairs)

            # The elements' type of 'pred_fn_pairs' in Op(case) must be tuple
            def type_error_pred_fn_1():
                layers.case(pred_fn_pairs=[1], default=fn_1)

            self.assertRaises(TypeError, type_error_pred_fn_1)

            # The tuple's size of 'pred_fn_pairs' in Op(case) must be 2
            def type_error_pred_fn_2():
                layers.case(pred_fn_pairs=[(1, 2, 3)], default=fn_1)

            self.assertRaises(TypeError, type_error_pred_fn_2)

            # The pred's type of 'pred_fn_pairs' in Op(case) must be bool Variable
            def type_error_pred():
                layers.case(pred_fn_pairs=[(1, fn_1)], default=fn_1)

            self.assertRaises(TypeError, type_error_pred)

            # The function of pred_fn_pairs in case must be callable
            def type_error_fn():
                layers.case(pred_fn_pairs=[(pred_1, 2)], default=fn_1)

            self.assertRaises(TypeError, type_error_fn)

            # The default in Op(case) must be callable
            def type_error_default():
                layers.case(pred_fn_pairs=[(pred_1, fn_1)], default=fn_1())

            self.assertRaises(TypeError, type_error_default)


281 282 283 284 285 286 287
# when optimizer in case
class TestMutiTask(unittest.TestCase):
    def test_optimizer_in_case(self):
        BATCH_SIZE = 1
        INPUT_SIZE = 784
        EPOCH_NUM = 2

288 289 290 291 292 293
        x = fluid.data(
            name='x', shape=[BATCH_SIZE, INPUT_SIZE], dtype='float32'
        )
        y = fluid.data(
            name='y', shape=[BATCH_SIZE, INPUT_SIZE], dtype='float32'
        )
294 295 296 297 298 299 300 301

        switch_id = fluid.data(name='switch_id', shape=[1], dtype='int32')

        one = layers.fill_constant(shape=[1], dtype='int32', value=1)
        adam = optimizer.Adam(learning_rate=0.001)
        adagrad = optimizer.Adagrad(learning_rate=0.001)

        def fn_1():
302
            sum = paddle.multiply(x, y)
303
            loss = paddle.mean(sum, name="f_1_loss")
304 305 306
            adam.minimize(loss)

        def fn_2():
307
            sum = paddle.multiply(x, y)
308
            loss = paddle.mean(sum, name="f_2_loss")
309 310 311 312 313 314 315 316 317
            adagrad.minimize(loss)

        layers.case(pred_fn_pairs=[(switch_id == one, fn_1)], default=fn_2)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        for epoch in range(EPOCH_NUM):
            np.random.seed(epoch)
318 319 320
            feed_image = np.random.random(size=[BATCH_SIZE, INPUT_SIZE]).astype(
                'float32'
            )
321
            main_program = fluid.default_main_program()
322 323 324 325 326 327 328 329 330
            out = exe.run(
                main_program,
                feed={
                    'x': feed_image,
                    'y': feed_image,
                    'switch_id': np.array([epoch]).astype('int32'),
                },
                fetch_list=[],
            )
331 332


L
liym27 已提交
333 334
if __name__ == '__main__':
    unittest.main()