slice_op.h 21.1 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
17
#include <utility>
W
whs 已提交
18 19
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
20
#include "paddle/fluid/operators/eigen/eigen_function.h"
21
#include "paddle/fluid/operators/math/math_function.h"
22
#include "paddle/fluid/operators/slice_utils.h"
23
#include "paddle/fluid/operators/utils.h"
W
whs 已提交
24 25 26

namespace paddle {
namespace operators {
27
using Tensor = framework::Tensor;
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
using Variable = framework::Variable;
using LoDTensorArray = framework::LoDTensorArray;
using DDim = framework::DDim;

inline void DealTensorArray(const framework::ExecutionContext& ctx,
                            const std::vector<int64_t>& starts,
                            const std::vector<int64_t>& ends,
                            bool out_is_array) {
  auto in_array = ctx.Input<LoDTensorArray>("Input");
  // If the input is LoDTensorArray, the rank of input is 1.
  int64_t in_size = in_array->size();
  int64_t start = starts[0] < 0 ? (starts[0] + in_size) : starts[0];
  int64_t end = ends[0] < 0 ? (ends[0] + in_size) : ends[0];

  start = std::max(start, static_cast<int64_t>(0));
  end = std::max(end, static_cast<int64_t>(0));
  end = std::min(end, in_size);

  PADDLE_ENFORCE_GT(end, start,
                    platform::errors::InvalidArgument(
                        "Attr(ends) should be greater than attr(starts) in "
                        "slice op. But received end = %d, start = %d.",
                        ends[0], starts[0]));
  int64_t out_size = end - start;

  if (out_is_array) {
    auto out_array = ctx.Output<LoDTensorArray>("Out");
    out_array->resize(out_size);

    for (int i = 0; i < out_size; ++i) {
      auto* out_tensor = &out_array->at(i);
      auto in_tensor = in_array->at(i + start);
      out_tensor->set_lod(in_tensor.lod());
      if (in_tensor.memory_size() > 0) {
        TensorCopy(in_tensor, ctx.GetPlace(), out_tensor);
      } else {
        VLOG(10) << "WARNING: The input tensor 'x_tensor' holds no memory, so "
                    "nothing has been written to output array["
                 << i << "].";
      }
    }
  } else {
    auto out = ctx.Output<Tensor>("Out");
    auto in_tensor = in_array->at(start);
    TensorCopy(in_tensor, ctx.GetPlace(), out);
  }
}
75

W
whs 已提交
76 77 78 79
template <typename DeviceContext, typename T>
class SliceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
80 81 82
    const Variable* input_var = ctx.InputVar("Input");
    bool is_tensor_array = input_var->IsType<LoDTensorArray>();
    int rank = is_tensor_array ? 1 : ctx.Input<Tensor>("Input")->dims().size();
83

W
whs 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    switch (rank) {
      case 1:
        SliceCompute<1>(ctx);
        break;
      case 2:
        SliceCompute<2>(ctx);
        break;
      case 3:
        SliceCompute<3>(ctx);
        break;
      case 4:
        SliceCompute<4>(ctx);
        break;
      case 5:
        SliceCompute<5>(ctx);
        break;
      case 6:
        SliceCompute<6>(ctx);
        break;
103 104 105
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The rank of input should be less than 7, but received %d.", rank));
W
whs 已提交
106 107 108 109 110
    }
  }

 private:
  template <size_t D>
111 112 113 114 115 116 117 118 119 120
  void SliceCompute(const framework::ExecutionContext& ctx) const {
    const Variable* input_var = ctx.InputVar("Input");
    Variable* out_var = ctx.OutputVar("Out");
    bool input_is_array = input_var->IsType<LoDTensorArray>();
    bool out_is_array = out_var->IsType<LoDTensorArray>();

    auto axes_int = ctx.Attr<std::vector<int>>("axes");
    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");
    std::vector<int64_t> axes(axes_int.begin(), axes_int.end());
121 122
    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());
123 124 125 126 127 128 129 130 131 132

    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");
    auto infer_flags = ctx.Attr<std::vector<int>>("infer_flags");

    // Step 1: Get the accurate attribute value of starts and ends
    auto starts_tensor_list = ctx.MultiInput<Tensor>("StartsTensorList");
    if (ctx.HasInput("StartsTensor")) {
      starts = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("StartsTensor"));
    } else if (starts_tensor_list.size() > 0) {
      starts = GetDataFromTensorList<int64_t>(starts_tensor_list);
133
    }
134 135 136 137 138 139

    auto ends_tensor_list = ctx.MultiInput<Tensor>("EndsTensorList");
    if (ctx.HasInput("EndsTensor")) {
      ends = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("EndsTensor"));
    } else if (ends_tensor_list.size() > 0) {
      ends = GetDataFromTensorList<int64_t>(ends_tensor_list);
140
    }
141

142 143 144 145 146 147 148 149 150
    PADDLE_ENFORCE_EQ(
        starts.size(), axes.size(),
        platform::errors::InvalidArgument(
            "The size of starts must be equal to the size of axes."));
    PADDLE_ENFORCE_EQ(
        ends.size(), axes.size(),
        platform::errors::InvalidArgument(
            "The size of ends must be equal to the size of axes."));

151 152 153
    // Step 2: Compute output
    if (input_is_array) {
      DealTensorArray(ctx, starts, ends, out_is_array);
154
      return;
155 156 157
    } else {
      auto in = ctx.Input<Tensor>("Input");
      auto out = ctx.Output<Tensor>("Out");
158

159 160 161
      auto in_dims = in->dims();
      auto out_dims = out->dims();
      auto slice_dims = out_dims;
162

163
      // 2.1 Infer output dims
164
      for (size_t i = 0; i < axes.size(); ++i) {
165 166 167 168 169 170
        // when start == -1 && end == start+1
        if (starts[i] == -1 && ends[i] == 0 && infer_flags[i] == -1) {
          auto ret =
              std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
          if (ret != decrease_axis.end()) {
            ends[i] = in_dims[axes[i]];
171 172 173 174
          }
        }
      }

175 176 177 178
      CheckAndUpdateSliceAttrs(in_dims, axes, &starts, &ends);
      slice_dims =
          GetSliceDims<int64_t>(in_dims, axes, starts, ends, nullptr, nullptr);
      out_dims = GetDecreasedDims(slice_dims, decrease_axis);
179

180 181 182
      // 2.2 Get output
      auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
      auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
H
Hongyu Liu 已提交
183

184 185 186 187 188 189 190
      for (size_t i = 0; i < D; ++i) {
        offsets[i] = 0;
        extents[i] = slice_dims[i];
      }
      for (size_t i = 0; i < axes.size(); ++i) {
        offsets[axes[i]] = starts[i];
      }
H
Hongyu Liu 已提交
191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
      out->Resize(slice_dims);
      out->mutable_data<T>(ctx.GetPlace());

      auto in_t = framework::EigenTensor<T, D>::From(*in, in_dims);
      auto out_t = framework::EigenTensor<T, D>::From(*out, slice_dims);
      auto& eigen_place =
          *ctx.template device_context<DeviceContext>().eigen_device();

      if (in->numel() <= Eigen::NumTraits<int>::highest()) {
        // similar to tf.slice:
        // if element number less than INT_MAX, change the type of index to int
        Eigen::DSizes<int, D> offsets_32bit, extents_32bit;
        for (size_t i = 0; i < D; i++) {
          offsets_32bit[i] = offsets[i];
          extents_32bit[i] = extents[i];
H
Hongyu Liu 已提交
207
        }
208 209 210 211 212 213
        EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
            eigen_place, framework::To32BitIndex(out_t),
            framework::To32BitIndex(in_t), offsets_32bit, extents_32bit);
      } else {
        EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
            eigen_place, out_t, in_t, offsets, extents);
H
Hongyu Liu 已提交
214 215
      }

216
      out->Resize(out_dims);
217
    }
W
whs 已提交
218 219
  }
};
220 221 222 223 224

template <typename DeviceContext, typename T>
class SliceGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
225 226 227
    const Variable* input_var = ctx.InputVar("Input");
    bool is_array = input_var->IsType<LoDTensorArray>();
    size_t rank = is_array ? 1 : ctx.Input<Tensor>("Input")->dims().size();
228

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    switch (rank) {
      case 1:
        SliceCompute<1>(ctx);
        break;
      case 2:
        SliceCompute<2>(ctx);
        break;
      case 3:
        SliceCompute<3>(ctx);
        break;
      case 4:
        SliceCompute<4>(ctx);
        break;
      case 5:
        SliceCompute<5>(ctx);
        break;
      case 6:
        SliceCompute<6>(ctx);
        break;
248 249 250
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The rank of input should be less than 7, but received %d.", rank));
251 252 253 254 255
    }
  }

 private:
  template <size_t D>
256 257 258 259
  void SliceCompute(const framework::ExecutionContext& ctx) const {
    auto axes = ctx.Attr<std::vector<int>>("axes");
    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");
260 261 262
    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());

263 264 265 266 267 268
    // Get the accurate attribute value of starts and ends
    auto starts_tensor_list = ctx.MultiInput<Tensor>("StartsTensorList");
    if (ctx.HasInput("StartsTensor")) {
      starts = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("StartsTensor"));
    } else if (starts_tensor_list.size() > 0) {
      starts = GetDataFromTensorList<int64_t>(starts_tensor_list);
269 270
    }

271 272 273 274 275
    auto ends_tensor_list = ctx.MultiInput<Tensor>("EndsTensorList");
    if (ctx.HasInput("EndsTensor")) {
      ends = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("EndsTensor"));
    } else if (ends_tensor_list.size() > 0) {
      ends = GetDataFromTensorList<int64_t>(ends_tensor_list);
276
    }
277 278 279 280 281 282 283 284 285 286

    Variable* d_input_var = ctx.OutputVar(framework::GradVarName("Input"));
    const Variable* d_out_var = ctx.InputVar(framework::GradVarName("Out"));
    bool d_input_is_array = d_input_var->IsType<LoDTensorArray>();
    bool d_out_is_array = d_out_var->IsType<LoDTensorArray>();

    if (d_input_is_array) {
      auto* input_array = ctx.Input<LoDTensorArray>("Input");
      auto* d_in_arr =
          ctx.Output<LoDTensorArray>(framework::GradVarName("Input"));
287

288
      int64_t d_in_size = input_array->size();
289
      d_in_arr->resize(d_in_size);
290 291
      // If the input is LoDTensorArray, the rank of input is 1.
      // So only use the 0th element of starts.
292 293
      int64_t start = starts[0] < 0 ? (starts[0] + d_in_size) : starts[0];
      start = std::max(start, static_cast<int64_t>(0));
294 295 296
      // set zero
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
297
      auto& dev_ctx = *pool.Get(ctx.GetPlace());
298 299 300
      math::SetConstant<DeviceContext, T> functor;
      for (int i = 0; i < d_in_size; ++i) {
        auto dim = input_array->at(i).dims();
301 302
        d_in_arr->at(i).Resize(dim);
        d_in_arr->at(i).mutable_data<T>(ctx.GetPlace());
303
        functor(reinterpret_cast<const DeviceContext&>(dev_ctx),
304
                &d_in_arr->at(i), static_cast<T>(0));
305 306
      }

307 308 309 310
      if (d_out_is_array) {
        auto* d_out_arr =
            ctx.Input<LoDTensorArray>(framework::GradVarName("Out"));
        int d_out_size = d_out_arr->size();
311
        for (int i = 0; i < d_out_size; ++i) {
312 313
          TensorCopy(d_out_arr->at(i), ctx.GetPlace(),
                     &(d_in_arr->at(start + i)));
314 315
        }
      } else {
316 317
        auto* d_out = ctx.Input<Tensor>(framework::GradVarName("Out"));
        TensorCopy(*d_out, ctx.GetPlace(), &(d_in_arr->at(start)));
318 319 320 321
      }
      return;
    }

322 323 324
    auto* d_out = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* d_input = ctx.Output<Tensor>(framework::GradVarName("Input"));
    d_input->mutable_data<T>(ctx.GetPlace());
325 326 327

    auto out_dims = d_out->dims();
    auto in_dims = d_input->dims();
328

329 330 331 332
    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");
    auto decrease_size = decrease_axis.size();
    if (decrease_size > 0) {
      if (decrease_size == (size_t)in_dims.size()) {
H
Hongyu Liu 已提交
333
        // all dims decrease
334 335
        std::vector<int> origin_out_shape(decrease_size, 1);
        out_dims = framework::make_ddim(std::vector<int>(decrease_size, 1));
H
Hongyu Liu 已提交
336
      } else {
337 338 339
        std::vector<int> origin_out_shape(out_dims.size() + decrease_size, -1);
        for (size_t i = 0; i < decrease_size; ++i) {
          origin_out_shape[decrease_axis[i]] = 1;
H
Hongyu Liu 已提交
340 341 342
        }

        int index = 0;
343 344 345
        for (size_t i = 0; i < origin_out_shape.size(); ++i) {
          if (origin_out_shape[i] == -1) {
            origin_out_shape[i] = out_dims[index];
H
Hongyu Liu 已提交
346 347 348 349
            ++index;
          }
        }

350
        out_dims = framework::make_ddim(origin_out_shape);
H
Hongyu Liu 已提交
351 352 353
      }
    }

354 355
    auto offsets = Eigen::array<int64_t, D>();
    auto extents = Eigen::array<int64_t, D>();
356 357 358 359
    for (size_t i = 0; i < D; ++i) {
      offsets[i] = 0;
      extents[i] = out_dims[i];
    }
360

361
    for (size_t i = 0; i < axes.size(); ++i) {
362 363
      int axis = axes[i];
      int64_t start = starts[i] < 0 ? (starts[i] + in_dims[axis]) : starts[i];
364
      start = std::max(start, static_cast<int64_t>(0));
365
      offsets[axis] = start;
366
    }
367

368
    Eigen::array<std::pair<int64_t, int64_t>, D> paddings;
369 370 371 372
    for (size_t i = 0; i < paddings.size(); ++i) {
      paddings[i].first = offsets[i];
      paddings[i].second = (in_dims[i] - out_dims[i]) - offsets[i];
    }
373
    EigenPaddingCompute(ctx, d_input, in_dims, d_out, out_dims, paddings);
374 375 376 377
  }

  template <size_t D>
  void EigenPaddingCompute(
378 379
      const framework::ExecutionContext& context, Tensor* d_input,
      const DDim& in_dims, const Tensor* d_out, const DDim& out_dims,
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
      const Eigen::array<std::pair<int64_t, int64_t>, D>& paddings) const {
    if (D <= 3) {
      // if dimension less than 3, cannot reduce dimension
      LaunchEigenPadding(context, d_input, in_dims, d_out, out_dims, paddings);
    } else {  // else we can reduce dimension
      // count not-zero padding number, and record the dimension
      int need_pad_num = 0, pad_dim = -1;
      for (size_t i = 0; i < D; i++) {
        if (paddings[i].first != 0 || paddings[i].second != 0) {
          need_pad_num++;
          pad_dim = i;
        }
      }

      if (need_pad_num == 0) {
        // do not need padding, pass if data address same, else copy
        if (d_input->mutable_data<T>(context.GetPlace()) == d_out->data<T>()) {
          // inplace, do not any operator, pass
        } else {
          framework::TensorCopy(
              *d_out, context.GetPlace(),
              context.template device_context<platform::DeviceContext>(),
              d_input);
        }
      } else if (need_pad_num == 1) {
        // only need padding one dimension, we can reduce dimension.
        // only the padding dimension is available for us.
        // How to reduce dimension(5 to 3 for example):
        // before(D=5):
        // in_dims:        [x1,  x2,  x3,  x4,  x5]
        // padding.first:  [0,   0,   a,   0,  0]
        // padding.second: [0,   0,   b,   0,  0]
        //                     | |
        //                     V V
        // after(D=3):
        // reshaped_in_dims:        [x1*x2,  x3,  x4*x5]
        // reshaped_padding.first:  [0,      a,     0]
        // reshaped_padding.second: [0,      b,     0]

        if (pad_dim == D - 1) {
          // only last dimension need padding,
          // reshape the dimension of tensor in 2: [preceding, padding]
          std::vector<int64_t> in_tore_shape(2, 1), out_tore_shape(2, 1);
          Eigen::array<std::pair<int64_t, int64_t>, 2> reshaped_padding;

          // first dimension is the accumulate of preceding dimension
          for (int i = 0; i < pad_dim; i++) {
            in_tore_shape[0] *= in_dims[i];
            out_tore_shape[0] *= out_dims[i];
          }
          // second dimension is the padding dimension
          in_tore_shape[1] = in_dims[pad_dim];
          out_tore_shape[1] = out_dims[pad_dim];

          // convert array from std::vector to DDim
435 436
          DDim reshaped_in_dims = framework::make_ddim(in_tore_shape);
          DDim reshaped_out_dims = framework::make_ddim(out_tore_shape);
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

          // after reshape: the first dimension do not need padding,
          // set padding[0] zero
          reshaped_padding[0].first = reshaped_padding[0].second = 0;
          // the second dimension is the previous padding dimension
          reshaped_padding[1].first = paddings[pad_dim].first;
          reshaped_padding[1].second = paddings[pad_dim].second;

          LaunchEigenPadding(context, d_input, reshaped_in_dims, d_out,
                             reshaped_out_dims, reshaped_padding);
        } else if (pad_dim == 0) {
          // only first dimension need padding,
          // reshape the dimension of tensor in 2: [padding, succeeding]
          // similar to (D - 1)
          std::vector<int64_t> in_tore_shape(2, 1), out_tore_shape(2, 1);
          Eigen::array<std::pair<int64_t, int64_t>, 2> reshaped_padding;

          // first dimension is the padding dimension
          in_tore_shape[0] = in_dims[pad_dim];
          out_tore_shape[0] = out_dims[pad_dim];
          // sencond dimension is the accumulate of succeeding dimension
          for (size_t i = pad_dim + 1; i < D; i++) {
            in_tore_shape[1] *= in_dims[i];
            out_tore_shape[1] *= out_dims[i];
          }

          // convert array from std::vector to DDim
464 465
          DDim reshaped_in_dims = framework::make_ddim(in_tore_shape);
          DDim reshaped_out_dims = framework::make_ddim(out_tore_shape);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

          // after reshape:
          // the first dimension is the previous padding dimension
          reshaped_padding[0].first = paddings[pad_dim].first;
          reshaped_padding[0].second = paddings[pad_dim].second;
          // the second dimension do not need padding, set padding[1] zero
          reshaped_padding[1].first = reshaped_padding[1].second = 0;

          LaunchEigenPadding(context, d_input, reshaped_in_dims, d_out,
                             reshaped_out_dims, reshaped_padding);
        } else {
          // other dimension need padding
          // reshape the dimension of tensor in 3:
          // [preceding, padding, succeeding]
          std::vector<int64_t> in_tore_shape(3, 1), out_tore_shape(3, 1);
          Eigen::array<std::pair<int64_t, int64_t>, 3> reshaped_padding;

          // first dimension is the accumulate of preceding dimension
          for (int i = 0; i < pad_dim; i++) {
            in_tore_shape[0] *= in_dims[i];
            out_tore_shape[0] *= out_dims[i];
          }
          // second dimension is the padding dimension
          in_tore_shape[1] = in_dims[pad_dim];
          out_tore_shape[1] = out_dims[pad_dim];
          // third dimension is the accumulate of succeeding dimension
          for (size_t i = pad_dim + 1; i < D; i++) {
            in_tore_shape[2] *= in_dims[i];
            out_tore_shape[2] *= out_dims[i];
          }

          // convert array from std::vector to DDim
498 499
          DDim reshaped_in_dims = framework::make_ddim(in_tore_shape);
          DDim reshaped_out_dims = framework::make_ddim(out_tore_shape);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522

          // after reshape:
          // the first dimension do not need padding, set padding[0] zero
          reshaped_padding[0].first = reshaped_padding[2].second = 0;
          // the second dimension is the previous padding dimension
          reshaped_padding[1].first = paddings[pad_dim].first;
          reshaped_padding[1].second = paddings[pad_dim].second;
          // the third dimension do not need padding, set padding[2] zero
          reshaped_padding[2].first = reshaped_padding[2].second = 0;

          LaunchEigenPadding(context, d_input, reshaped_in_dims, d_out,
                             reshaped_out_dims, reshaped_padding);
        }
      } else {
        // need padding at many dimension, cannot reduce dimension
        LaunchEigenPadding(context, d_input, in_dims, d_out, out_dims,
                           paddings);
      }
    }
  }

  template <size_t D>
  void LaunchEigenPadding(
523 524
      const framework::ExecutionContext& context, Tensor* d_input,
      const DDim& in_dims, const Tensor* d_out, const DDim& out_dims,
525 526 527
      const Eigen::array<std::pair<int64_t, int64_t>, D>& paddings) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
528 529
    auto d_in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
530
            *d_input, in_dims);
531 532
    auto d_out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
H
Hongyu Liu 已提交
533
            *d_out, out_dims);
534 535 536 537 538 539 540 541 542

    if (d_input->numel() <= Eigen::NumTraits<int>::highest()) {
      // similar to tf.pad:
      // if element number less than INT_MAX, change the type of index to int
      Eigen::array<std::pair<int, int>, D> paddings_32bit;
      for (size_t i = 0; i < D; i++) {
        paddings_32bit[i] =
            std::make_pair(paddings[i].first, paddings[i].second);
      }
543 544 545
      EigenPad<std::decay_t<decltype(place)>, T, D>::Eval(
          place, framework::To32BitIndex(d_in_t),
          framework::To32BitIndex(d_out_t), paddings_32bit, static_cast<T>(0));
546
    } else {
547 548
      EigenPad<std::decay_t<decltype(place)>, T, D>::Eval(
          place, d_in_t, d_out_t, paddings, static_cast<T>(0));
549
    }
550 551
  }
};
W
whs 已提交
552 553
}  // namespace operators
}  // namespace paddle