preprocess.py 6.7 KB
Newer Older
H
hupeng03 已提交
1 2
# -*- coding: UTF-8 -*-

Z
zhangjinchao01 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

H
hupeng03 已提交
17 18
"""
1. (remove HTML before or not)tokensizing
Z
zhangjinchao01 已提交
19 20 21 22
2. pos sample : rating score 5; neg sample: rating score 1-2.

Usage:
    python preprocess.py -i data_file [random seed]
H
hupeng03 已提交
23
"""
Z
zhangjinchao01 已提交
24

H
hupeng03 已提交
25 26
import sys
import os
Z
zhangjinchao01 已提交
27
import operator
H
hupeng03 已提交
28
import gzip
Z
zhangjinchao01 已提交
29 30
from subprocess import Popen, PIPE
from optparse import OptionParser
H
hupeng03 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
import json
from bs4 import BeautifulSoup
from multiprocessing import Queue
from multiprocessing import Pool
import multiprocessing

batch_size = 5000
word_count = {}
num_tokenize = max(1, multiprocessing.cpu_count() - 2)  # parse + tokenize + save
max_queue_size = 8
parse_queue = Queue(maxsize=max_queue_size + num_tokenize)
tokenize_queue = Queue(maxsize=max_queue_size + num_tokenize)


def create_dict(data):
    """
    Create dictionary based on data, and saved in data_dir/dict.txt.
    The first line is unk \t -1.
    data: list, input data by batch.
    """
    for seq in data:
        try:
            for w in seq.lower().split():
                if w not in word_count:
                    word_count[w] = 1
                else:
                    word_count[w] += 1
        except:
            sys.stderr.write(seq + "\tERROR\n")

Z
zhangjinchao01 已提交
61 62 63 64 65

def parse(path):
    """
    Open .gz file.
    """
H
hupeng03 已提交
66
    sys.stderr.write(path)
Z
zhangjinchao01 已提交
67 68
    g = gzip.open(path, 'r')
    for l in g:
H
hupeng03 已提交
69 70
        yield json.loads(l)
    g.close()
Z
zhangjinchao01 已提交
71

H
hupeng03 已提交
72
'''
Z
zhangjinchao01 已提交
73 74 75 76 77 78 79
def clean(review):
    """
    Clean input review: remove HTML, convert words to lower cases.
    """
    # Remove HTML
    review_text = BeautifulSoup(review, "html.parser").get_text()
    return review_text
H
hupeng03 已提交
80 81
'''

Z
zhangjinchao01 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

def tokenize(sentences):
    """
    Use tokenizer.perl to tokenize input sentences.
    tokenizer.perl is tool of Moses.
    sentences : a list of input sentences.
    return: a list of processed text.
    """
    dir = './data/mosesdecoder-master/scripts/tokenizer/tokenizer.perl'
    tokenizer_cmd = [dir, '-l', 'en', '-q', '-']
    assert isinstance(sentences, list)
    text = "\n".join(sentences)
    tokenizer = Popen(tokenizer_cmd, stdin=PIPE, stdout=PIPE)
    tok_text, _ = tokenizer.communicate(text)
    toks = tok_text.split('\n')[:-1]
    return toks

H
hupeng03 已提交
99 100

def save_data(instance, data_dir, pre_fix, batch_num):
Z
zhangjinchao01 已提交
101
    """
H
hupeng03 已提交
102
    save data by batch
Z
zhangjinchao01 已提交
103
    """
H
hupeng03 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    label = ['1' if pre_fix == 'pos' else '0' for i in range(len(instance))]
    lines = ['%s\t%s' % (label[i], instance[i]) for i in range(len(label))]
    file_name = os.path.join(data_dir, "%s_%s.txt" % (pre_fix, batch_num))
    file(file_name, 'w').write('\n'.join(lines) + '\n')


def tokenize_batch(id):
    """
    tokenize data by batch
    """
    while True:
        num_batch, instance, pre_fix = parse_queue.get()
        if num_batch == -1:  ### parse_queue finished
            tokenize_queue.put((-1, None, None))
            sys.stderr.write("tokenize theread %s finish\n" % (id))
            break
        tokenize_instance = tokenize(instance)
        tokenize_queue.put((num_batch, tokenize_instance, pre_fix))
        sys.stderr.write('.')


def save_batch(data_dir, num_tokenize, data_dir_dict):
    """
        save data by batch
        build dict.txt
    """
    token_count = 0
    while True:
        num_batch, instance, pre_fix = tokenize_queue.get()
        if num_batch == -1:
            token_count += 1
            if token_count == num_tokenize:  #### tokenize finished.
                break
            else:
                continue
        save_data(instance, data_dir, pre_fix, num_batch)
        create_dict(instance)  ## update dict

    sys.stderr.write("save file finish\n")
    f = open(data_dir_dict, 'w')
Z
zhangjinchao01 已提交
144
    f.write('%s\t%s\n' % ('unk', '-1'))
H
hupeng03 已提交
145 146
    for k, v in sorted(word_count.items(), key=operator.itemgetter(1), \
                       reverse=True):
Z
zhangjinchao01 已提交
147 148
        f.write('%s\t%s\n' % (k, v))
    f.close()
H
hupeng03 已提交
149
    sys.stderr.write("build dict finish\n")
Z
zhangjinchao01 已提交
150 151


H
hupeng03 已提交
152
def parse_batch(data, num_tokenize):
Z
zhangjinchao01 已提交
153
    """
H
hupeng03 已提交
154 155
    parse data by batch
    parse -> clean ->tokenize ->save
Z
zhangjinchao01 已提交
156
    """
H
hupeng03 已提交
157 158
    raw_txt = parse(data)
    neg, pos = [], []
Z
zhangjinchao01 已提交
159
    count = 0
H
hupeng03 已提交
160
    sys.stderr.write("extract raw data\n")
Z
zhangjinchao01 已提交
161 162
    for l in raw_txt:
        rating = l["overall"]
H
hupeng03 已提交
163 164
        #text = clean(l["reviewText"].lower()) # remove HTML
        text = l["reviewText"].lower()  # # convert words to lower case
Z
zhangjinchao01 已提交
165 166 167 168
        if rating == 5.0 and text:
            pos.append(text)
        if rating < 3.0 and text:
            neg.append(text)
H
hupeng03 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
        if len(pos) == batch_size or len(neg) == batch_size:
            if len(pos) == batch_size:
                batch = pos
                pre_fix = 'pos'
            else:
                batch = neg
                pre_fix = 'neg'

            parse_queue.put((count, batch, pre_fix))
            count += 1
            if pre_fix == 'pos':
                pos = []
            else:
                neg = []

    if len(pos) > 0:
        parse_queue.put((count, pos, 'pos'))
        count += 1
    if len(neg) > 0:
        parse_queue.put((count, neg, 'neg'))
Z
zhangjinchao01 已提交
189
        count += 1
H
hupeng03 已提交
190 191 192 193
    for i in range(num_tokenize):
        parse_queue.put((-1, None, None))  #### for tokenize's input finished
    sys.stderr.write("parsing finish\n")

Z
zhangjinchao01 已提交
194 195 196 197

def option_parser():
    parser = OptionParser(usage="usage: python preprcoess.py "\
                                "-i data_path [options]")
H
hupeng03 已提交
198 199 200 201 202 203 204 205 206
    parser.add_option(
        "-i", "--data", action="store", dest="input", help="Input data path.")
    parser.add_option(
        "-s",
        "--seed",
        action="store",
        dest="seed",
        default=1024,
        help="Set random seed.")
Z
zhangjinchao01 已提交
207 208
    return parser.parse_args()

H
hupeng03 已提交
209

Z
zhangjinchao01 已提交
210 211 212 213
def main():
    reload(sys)
    sys.setdefaultencoding('utf-8')
    options, args = option_parser()
H
hupeng03 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    data = options.input
    seed = options.seed
    data_dir_dict = os.path.join(os.path.dirname(data), 'dict.txt')
    data_dir = os.path.join(os.path.dirname(data), 'tmp')
    pool = Pool(processes=num_tokenize + 2)
    pool.apply_async(parse_batch, args=(data, num_tokenize))
    for i in range(num_tokenize):
        pool.apply_async(tokenize_batch, args=(str(i), ))
    pool.apply_async(save_batch, args=(data_dir, num_tokenize, data_dir_dict))
    pool.close()
    pool.join()

    sys.stderr.write("clean data done.\n")
    file(os.path.join(os.path.dirname(data), 'labels.list'),
         'w').write('neg\t0\npos\t1\n')

Z
zhangjinchao01 已提交
230 231 232

if __name__ == '__main__':
    main()