test_tdm_sampler_op.py 10.5 KB
Newer Older
C
Chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# -*-coding:utf-8-*-
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
import paddle.fluid as fluid


def create_tdm_travel():
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
    tree_travel = [
        [1, 3, 7, 14],
        [1, 3, 7, 15],
        [1, 3, 8, 16],
        [1, 3, 8, 17],
        [1, 4, 9, 18],
        [1, 4, 9, 19],
        [1, 4, 10, 20],
        [1, 4, 10, 21],
        [2, 5, 11, 22],
        [2, 5, 11, 23],
        [2, 5, 12, 24],
        [2, 5, 12, 25],
        [2, 6, 13, 0],
    ]
C
Chengmo 已提交
39 40 41 42
    return tree_travel


def create_tdm_layer():
43 44 45 46 47 48
    tree_layer = [
        [1, 2],
        [3, 4, 5, 6],
        [7, 8, 9, 10, 11, 12, 13],
        [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25],
    ]
C
Chengmo 已提交
49 50 51 52 53
    return tree_layer


type_dict = {
    "int32": int(core.VarDesc.VarType.INT32),
54
    "int64": int(core.VarDesc.VarType.INT64),
C
Chengmo 已提交
55 56 57 58 59 60 61 62 63 64 65 66
}


class TestTDMSamplerOp(OpTest):
    def setUp(self):
        self.__class__.op_type = "tdm_sampler"
        self.config()

        self.tree_travel = create_tdm_travel()
        self.tree_layer = create_tdm_layer()

        output_0 = self.x_shape[0]
67 68 69
        output_1 = len(self.neg_samples_num_list) + np.sum(
            self.neg_samples_num_list
        )
C
Chengmo 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
        self.output_shape = (output_0, output_1)
        self.layer_sample_nums = [1 + i for i in self.neg_samples_num_list]

        layer_node_num_list = [len(i) for i in self.tree_layer]
        tree_layer_offset_lod = [0]
        tree_layer_flat = []
        node_nums = 0
        for layer_idx, layer_node in enumerate(layer_node_num_list):
            tree_layer_flat += self.tree_layer[layer_idx]
            node_nums += layer_node
            tree_layer_offset_lod.append(node_nums)

        travel_np = np.array(self.tree_travel).astype(self.tree_dtype)
        layer_np = np.array(tree_layer_flat).astype(self.tree_dtype)
        layer_np = layer_np.reshape([-1, 1])

86 87 88
        self.x_np = np.random.randint(low=0, high=13, size=self.x_shape).astype(
            self.x_type
        )
C
Chengmo 已提交
89 90 91 92 93 94 95 96 97 98

        out = np.random.random(self.output_shape).astype(self.out_dtype)
        label = np.random.random(self.output_shape).astype(self.out_dtype)
        mask = np.random.random(self.output_shape).astype(self.out_dtype)

        self.attrs = {
            'neg_samples_num_list': self.neg_samples_num_list,
            'output_positive': True,
            'layer_offset_lod': tree_layer_offset_lod,
            'seed': 0,
99
            'dtype': type_dict[self.out_dtype],
C
Chengmo 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        }
        self.inputs = {'X': self.x_np, 'Travel': travel_np, 'Layer': layer_np}
        self.outputs = {'Out': out, 'Labels': label, 'Mask': mask}

    def config(self):
        """set test shape & type"""
        self.neg_samples_num_list = [0, 0, 0, 0]
        self.x_shape = (10, 1)
        self.x_type = 'int32'
        self.tree_dtype = 'int32'
        self.out_dtype = 'int32'

    def test_check_output(self):
        places = self._get_places()
        for place in places:
            outs, fetch_list = self._calc_output(place)
            self.out = [np.array(out) for out in outs]

        x_res = self.out[fetch_list.index('Out')]
        label_res = self.out[fetch_list.index('Labels')]
        mask_res = self.out[fetch_list.index('Mask')]

        # check dtype
        if self.out_dtype == 'int32':
            assert x_res.dtype == np.int32
            assert label_res.dtype == np.int32
            assert mask_res.dtype == np.int32
        elif self.out_dtype == 'int64':
            assert x_res.dtype == np.int64
            assert label_res.dtype == np.int64
            assert mask_res.dtype == np.int64

        x_res = x_res.reshape(self.output_shape)
        label_res = label_res.reshape(self.output_shape)
        mask_res = mask_res.reshape(self.output_shape)

        layer_nums = len(self.neg_samples_num_list)
        for batch_ids, x_batch in enumerate(x_res):
            start_offset = 0
            positive_travel = []
            for layer_idx in range(layer_nums):
                end_offset = start_offset + self.layer_sample_nums[layer_idx]
                sampling_res = x_batch[start_offset:end_offset]
                sampling_res_list = sampling_res.tolist()
                positive_travel.append(sampling_res_list[0])

146
                label_sampling_res = label_res[batch_ids][
147 148
                    start_offset:end_offset
                ]
C
Chengmo 已提交
149 150 151 152 153 154 155
                mask_sampling_res = mask_res[batch_ids][start_offset:end_offset]

                # check unique
                if sampling_res_list[0] != 0:
                    assert len(set(sampling_res_list)) == len(
                        sampling_res_list
                    ), "len(set(sampling_res_list)): {}, len(sampling_res_list): {} , sample_res: {}, label_res:{}, mask_res: {}".format(
156 157 158 159 160 161
                        len(set(sampling_res_list)),
                        len(sampling_res_list),
                        sampling_res,
                        label_sampling_res,
                        mask_sampling_res,
                    )
C
Chengmo 已提交
162 163 164 165 166 167 168
                # check legal
                layer_node = self.tree_layer[layer_idx]
                layer_node.append(0)
                for sample in sampling_res_list:
                    assert (
                        sample in layer_node
                    ), "sample: {}, layer_node: {} , sample_res: {}, label_res: {}, mask_res:{}".format(
169 170 171 172 173 174
                        sample,
                        layer_node,
                        sampling_res,
                        label_sampling_res,
                        mask_sampling_res,
                    )
C
Chengmo 已提交
175 176 177 178 179 180 181 182 183 184 185

                # check label
                label_flag = 1
                if sampling_res[0] == 0:
                    label_flag = 0
                assert label_sampling_res[0] == label_flag
                # check mask
                padding_index = np.where(sampling_res == 0)
                assert not np.sum(
                    mask_sampling_res[padding_index]
                ), "np.sum(mask_sampling_res[padding_index]): {} ".format(
186 187
                    np.sum(mask_sampling_res[padding_index])
                )
C
Chengmo 已提交
188 189
                start_offset = end_offset
            # check travel legal
190 191 192
            assert (
                self.tree_travel[int(self.x_np[batch_ids])] == positive_travel
            )
C
Chengmo 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288


class TestCase1(TestTDMSamplerOp):
    def config(self):
        """test input int64"""
        self.neg_samples_num_list = [0, 0, 0, 0]
        self.x_shape = (10, 1)
        self.x_type = 'int64'
        self.tree_dtype = 'int64'
        self.out_dtype = 'int32'


class TestCase2(TestTDMSamplerOp):
    def config(self):
        """test dtype int64"""
        self.neg_samples_num_list = [0, 0, 0, 0]
        self.x_shape = (10, 1)
        self.x_type = 'int32'
        self.tree_dtype = 'int32'
        self.out_dtype = 'int64'


class TestCase3(TestTDMSamplerOp):
    def config(self):
        """test all dtype int64"""
        self.neg_samples_num_list = [0, 0, 0, 0]
        self.x_shape = (10, 1)
        self.x_type = 'int64'
        self.tree_dtype = 'int64'
        self.out_dtype = 'int64'


class TestCase4(TestTDMSamplerOp):
    def config(self):
        """test one neg"""
        self.neg_samples_num_list = [1, 1, 1, 1]
        self.x_shape = (10, 1)
        self.x_type = 'int64'
        self.tree_dtype = 'int32'
        self.out_dtype = 'int64'


class TestCase5(TestTDMSamplerOp):
    def config(self):
        """test normal neg"""
        self.neg_samples_num_list = [1, 2, 3, 4]
        self.x_shape = (10, 1)
        self.x_type = 'int64'
        self.tree_dtype = 'int32'
        self.out_dtype = 'int64'


class TestCase6(TestTDMSamplerOp):
    def config(self):
        """test huge batchsize"""
        self.neg_samples_num_list = [1, 2, 3, 4]
        self.x_shape = (100, 1)
        self.x_type = 'int64'
        self.tree_dtype = 'int32'
        self.out_dtype = 'int64'


class TestCase7(TestTDMSamplerOp):
    def config(self):
        """test full neg"""
        self.neg_samples_num_list = [1, 3, 6, 11]
        self.x_shape = (10, 1)
        self.x_type = 'int64'
        self.tree_dtype = 'int32'
        self.out_dtype = 'int64'


class TestTDMSamplerShape(unittest.TestCase):
    def test_shape(self):
        x = fluid.layers.data(name='x', shape=[1], dtype='int32', lod_level=1)
        tdm_tree_travel = create_tdm_travel()
        tdm_tree_layer = create_tdm_layer()
        layer_node_num_list = [len(i) for i in tdm_tree_layer]

        tree_layer_flat = []
        for layer_idx, layer_node in enumerate(layer_node_num_list):
            tree_layer_flat += tdm_tree_layer[layer_idx]

        travel_array = np.array(tdm_tree_travel).astype('int32')
        layer_array = np.array(tree_layer_flat).astype('int32')

        neg_samples_num_list = [1, 2, 3, 4]
        leaf_node_num = 13

        sample, label, mask = fluid.contrib.layers.tdm_sampler(
            x,
            neg_samples_num_list,
            layer_node_num_list,
            leaf_node_num,
            tree_travel_attr=fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
289 290 291 292 293 294
                    travel_array
                )
            ),
            tree_layer_attr=fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(layer_array)
            ),
C
Chengmo 已提交
295 296 297 298
            output_positive=True,
            output_list=True,
            seed=0,
            tree_dtype='int32',
299 300
            dtype='int32',
        )
C
Chengmo 已提交
301 302 303 304 305 306

        place = fluid.CPUPlace()
        exe = fluid.Executor(place=place)
        exe.run(fluid.default_startup_program())

        feed = {
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
            'x': np.array(
                [
                    [0],
                    [1],
                    [2],
                    [3],
                    [4],
                    [5],
                    [6],
                    [7],
                    [8],
                    [9],
                    [10],
                    [11],
                    [12],
                ]
            ).astype('int32')
C
Chengmo 已提交
324 325 326 327 328 329
        }
        exe.run(feed=feed)


if __name__ == "__main__":
    unittest.main()