test_mul_nn_grad.py 4.4 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker
from decorator_helper import prog_scope
24

C
ceci3 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
paddle.enable_static()


class TestMulGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        prog = fluid.Program()
        with fluid.program_guard(prog):
            x = layers.create_parameter(dtype="float64", shape=[2, 8], name='x')
            y = layers.create_parameter(dtype="float64", shape=[8, 4], name='y')
            z = layers.mul(x=x, y=y)
            gradient_checker.grad_check([x, y], z, place=place)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestMulDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        x_shape = [7, 11]
        y_shape = [11, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        y = layers.data('y', y_shape, False, dtype)
        y.persistable = True
        out = layers.mul(x, y)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, y_shape).astype(dtype)

63 64 65
        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps
        )
C
ceci3 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestMatmulDoubleGradCheck(unittest.TestCase):
    def setUp(self):
        self.init_test()

    def init_test(self):
        self.x_shape = [2]
        self.y_shape = [2]
        self.transpose_x = False
        self.transpose_y = False

    @prog_scope()
    def func(self, place):
        eps = 0.005
        dtype = np.float64
        typename = "float64"
90 91 92 93 94 95 96 97 98
        x = layers.create_parameter(
            dtype=typename, shape=self.x_shape, name='x'
        )
        y = layers.create_parameter(
            dtype=typename, shape=self.y_shape, name='y'
        )
        out = layers.matmul(
            x, y, self.transpose_x, self.transpose_y, name='out'
        )
C
ceci3 已提交
99 100 101

        x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype)
102 103 104
        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps
        )
C
ceci3 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


def TestMatmulDoubleGradCheckCase1(TestMatmulDoubleGradCheck):
    def init_test(self):
        self.x_shape = [2, 3]
        self.y_shape = [3, 2]
        self.transpose_x = True
        self.transpose_y = True


def TestMatmulDoubleGradCheckCase2(TestMatmulDoubleGradCheck):
    def init_test(self):
        self.x_shape = [2, 4, 3]
        self.y_shape = [2, 4, 5]
        self.transpose_x = True
        self.transpose_y = False


def TestMatmulDoubleGradCheckCase3(TestMatmulDoubleGradCheck):
    def init_test(self):
        self.x_shape = [2, 3, 4, 5]
        self.y_shape = [2, 3, 3, 5]
        self.transpose_x = False
        self.transpose_y = True


def TestMatmulDoubleGradCheckCase4(TestMatmulDoubleGradCheck):
    def init_test(self):
        self.x_shape = [2, 3, 4]
        self.y_shape = [4, 3]
        self.transpose_x = False
        self.transpose_y = False


if __name__ == "__main__":
    unittest.main()